Section 1: Simulated Yield Adjustment Factor Calculation

For sequence 1 to 5000:

\[
\text{Simulated Yield Adjustment Factor[sequence]} = \frac{\text{Simulated Milk Per Cow}[sequence]}{\text{Expected Yield}}
\]

For sequence 1 to 5000:

- **Simulated Milk Per Cow[sequence]**
 - Field Name: Simulated Milk Per Cow
 - Record Number: Internal
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: 4 decimals

- **Expected Yield**
 - Field Name: A00832
 - Record Number: 6
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **DRP Yield Draw Quantity**
 - Field Name: A00831
 - Record Number: 22
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Expected Yield Standard Deviation**
 - Field Name: A00832
 - Record Number: 8
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

\[
\text{Round}(\text{Expected Yield} + NORMSINV(\text{DRP Yield Draw Quantity[sequence]})) \times \text{Expected Yield Standard Deviation}
\]

\[
\text{Round}(\text{Simulated Milk Per Cow[sequence]} / \text{Expected Yield}, 4)
\]

Section 2: Simulated Class Price III Calculations

For sequence 1 to 5000:

\[
\text{Simulated Month 1 Class III Price[sequence]} = \text{Round}((\text{Month 1 Class III Price Draw[sequence]} + \text{Month 1 Class III Price Draw[sequence]} + \text{Month 1 Class III Price Draw[sequence]}) / 3.00, 2)
\]

\[
\text{Round}(\text{Simulated Month 1 Class III Price[sequence]} + \text{Simulated Month 2 Class III Price[sequence]} + \text{Simulated Month 3 Class III Price[sequence]}) / 3.00, 2)
\]

- **Simulated Month 1 Class III Price[sequence]**
 - Field Name: Simulated Month 1 Class III Price
 - Record Number: Internal
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: 4 decimals

- **Month 1 Class III Price Draw**
 - Field Name: A00831
 - Record Number: 7
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 1 Class III Sigma**
 - Field Name: A00833
 - Record Number: 22
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 1 Expected Class III Price**
 - Field Name: A00833
 - Record Number: 8
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Simulated Month 2 Class III Price[sequence]**
 - Field Name: Simulated Month 2 Class III Price
 - Record Number: Internal
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: 4 decimals

- **Month 2 Class III Price Draw**
 - Field Name: A00831
 - Record Number: 8
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 2 Class III Sigma**
 - Field Name: A00833
 - Record Number: 23
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 2 Expected Class III Price**
 - Field Name: A00833
 - Record Number: 9
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Simulated Month 3 Class III Price[sequence]**
 - Field Name: Simulated Month 3 Class III Price
 - Record Number: Internal
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: 4 decimals

- **Month 3 Class III Price Draw**
 - Field Name: A00831
 - Record Number: 9
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 3 Class III Sigma**
 - Field Name: A00833
 - Record Number: 24
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

- **Month 3 Expected Class III Price**
 - Field Name: A00833
 - Record Number: 9
 - Field Number: 999.9999
 - Field Format: None
 - Field Rounding: None

\[
\text{Round}(\text{Simulated Month 3 Class III Price[sequence]} + \text{Simulated Month 2 Class III Price[sequence]} + \text{Simulated Month 3 Class III Price[sequence]}) / 3.00, 2)
\]
Section 3: Simulated Class Price IV Calculations

For sequence 1 to 5000: SimulatedMonth1ClassIVPrice[sequence] =

\[
\text{Round(EXP(Round(NORMSINV(Month1ClassIVPriceDraw[sequence]) * Month1ClassIVSigma + LN(Month1ExpectedClassIVPrice), 4) - Round(0.5 * (Round(Month1ClassIVSigma^2,4))}}, 4)
\]

For sequence 1 to 5000: SimulatedMonth2ClassIVPrice[sequence] =

\[
\text{Round(EXP(Round(NORMSINV(Month2ClassIVPriceDraw[sequence]) * Month2ClassIVSigma + LN(Month2ExpectedClassIVPrice), 4) - Round(0.5 * (Round(Month2ClassIVSigma^2,4))}}, 4)
\]

For sequence 1 to 5000: SimulatedMonth3ClassIVPrice[sequence] =

\[
\text{Round(EXP(Round(NORMSINV(Month3ClassIVPriceDraw[sequence]) * Month3ClassIVSigma + LN(Month3ExpectedClassIVPrice), 4) - Round(0.5 * (Round(Month3ClassIVSigma^2,4))}}, 4)
\]

Section 4: Class Price Expected Revenue Guarantee Calculations

For sequence 1 to 5000: SimulatedRevenueAmount[sequence] =

\[
\text{Round(Round((SimulatedClassIIIPrice[sequence] * ClassPriceWeightingFactor + SimulatedClassIVPrice[sequence] * (1-ClassPriceWeightingFactor)),4) / (0.00, 0), 0)}
\]

The total value of the milk Declared; determined by multiplying the class prices by their respective weights and the volume of Declared milk production, divided by 100.
Component Price Calculation

Section 5: Simulated Component Price Calculations

For sequence 1 to 5000:
SimulatedMonth1ButterPrice[sequence] = Simulated Month 1 Butter Price Internal 999.9999 4 decimals

Month 1 Butter Price Draw A00831 13 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 1 Butter Sigma A00833 28 999.9999 None
Month 1 Expected Butter Price A00833 13 999.9999 None

For sequence 1 to 5000:
SimulatedMonth2ButterPrice[sequence] = Simulated Month 2 Butter Price Internal 999.9999 4 decimals

Month 2 Butter Price Draw A00831 14 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 2 Butter Sigma A00833 29 999.9999 None
Month 2 Expected Butter Price A00833 14 999.9999 None

For sequence 1 to 5000:
SimulatedMonth3ButterPrice[sequence] = Simulated Month 3 Butter Price Internal 999.9999 4 decimals

Month 3 Butter Price Draw A00831 15 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 3 Butter Sigma A00833 30 999.9999 None
Month 3 Expected Butter Price A00833 15 999.9999 None

For sequence 1 to 5000:
SimulatedMonth1CheesePrice[sequence] = Simulated Month 1 Cheese Price Internal 999.9999 4 decimals

Month 1 Cheese Price Draw A00831 16 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 1 Cheese Sigma A00833 31 999.9999 None
Month 1 Expected Cheese Price A00833 16 999.9999 None

For sequence 1 to 5000:
SimulatedMonth2CheesePrice[sequence] = Simulated Month 2 Cheese Price Internal 999.9999 4 decimals

Month 2 Cheese Price Draw A00831 17 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 2 Cheese Sigma A00833 32 999.9999 None
Month 2 Expected Cheese Price A00833 17 999.9999 None

For sequence 1 to 5000:
SimulatedMonth3CheesePrice[sequence] = Simulated Month 3 Cheese Price Internal 999.9999 4 decimals

Month 3 Cheese Price Draw A00831 18 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 3 Cheese Sigma A00833 33 999.9999 None
Month 3 Expected Cheese Price A00833 18 999.9999 None

For sequence 1 to 5000:
SimulatedMonth1CheesePrice[sequence] = Simulated Month 1 Cheese Price Internal 999.9999 4 decimals

Month 1 Cheese Price Draw A00831 13 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 1 Cheese Sigma A00833 28 999.9999 None
Month 1 Expected Cheese Price A00833 13 999.9999 None

For sequence 1 to 5000:
SimulatedMonth2CheesePrice[sequence] = Simulated Month 2 Cheese Price Internal 999.9999 4 decimals

Month 2 Cheese Price Draw A00831 14 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 2 Cheese Sigma A00833 29 999.9999 None
Month 2 Expected Cheese Price A00833 14 999.9999 None

For sequence 1 to 5000:
SimulatedMonth3CheesePrice[sequence] = Simulated Month 3 Cheese Price Internal 999.9999 4 decimals

Month 3 Cheese Price Draw A00831 15 999.9999 None sequence = [1,...,5000] Prices are simulated for 5000 rounds
Month 3 Cheese Sigma A00833 30 999.9999 None
Month 3 Expected Cheese Price A00833 15 999.9999 None

Round((SimulatedMonth1ButterPrice[sequence] + SimulatedMonth2ButterPrice[sequence] + SimulatedMonth3ButterPrice[sequence]) / 3.00,4)

Round(EXP(Round(NORMSINV(Month1ButterPriceDraw[sequence]) * Month1ButterSigma + LN(Month1ExpectedButterPrice),4) - Round(0.5 * (Round(Month1ButterSigma^2,4)),4)),4)

Round(EXP(Round(NORMSINV(Month2ButterPriceDraw[sequence]) * Month2ButterSigma + LN(Month2ExpectedButterPrice),4) - Round(0.5 * (Round(Month2ButterSigma^2,4)),4)),4)

Round((SimulatedMonth1CheesePrice[sequence] + SimulatedMonth2CheesePrice[sequence] + SimulatedMonth3CheesePrice[sequence]) / 3.00,4)

Round(EXP(Round(NORMSINV(Month1CheesePriceDraw[sequence]) * Month1CheeseSigma + LN(Month1ExpectedCheesePrice),4) - Round(0.5 * (Round(Month1CheeseSigma^2,4)),4)),4)

Round(EXP(Round(NORMSINV(Month2CheesePriceDraw[sequence]) * Month2CheeseSigma + LN(Month2ExpectedCheesePrice),4) - Round(0.5 * (Round(Month2CheeseSigma^2,4)),4)),4)

Round((SimulatedMonth1CheesePrice[sequence] + SimulatedMonth2CheesePrice[sequence] + SimulatedMonth3CheesePrice[sequence]) / 3.00,4)

Round(EXP(Round(NORMSINV(Month3CheesePriceDraw[sequence]) * Month3CheeseSigma + LN(Month3ExpectedCheesePrice),4) - Round(0.5 * (Round(Month3CheeseSigma^2,4)),4)),4)
For sequence 1 to 5000: SimulatedMonth1DryWheyPrice[sequence] = Simulated Month 1 Dry Whey Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 1 Dry Whey Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth2DryWheyPrice[sequence] = Simulated Month 2 Dry Whey Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 2 Dry Whey Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth3DryWheyPrice[sequence] = Simulated Month 3 Dry Whey Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 3 Dry Whey Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth1NonfatDryMilkPrice[sequence] = Simulated Month 1 Nonfat Dry Milk Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 1 Nonfat Dry Milk Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth2NonfatDryMilkPrice[sequence] = Simulated Month 2 Nonfat Dry Milk Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 2 Nonfat Dry Milk Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth3NonfatDryMilkPrice[sequence] = Simulated Month 3 Nonfat Dry Milk Price

<table>
<thead>
<tr>
<th>sequence</th>
<th>Simulated Month 3 Nonfat Dry Milk Price</th>
<th>Internal</th>
<th>999.9999</th>
<th>4 decimals</th>
<th>sequence = [1,...,5000] Prices are simulated for 5000 rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Round(EXP(Round(NORMSINV(Month1DryWheyPriceDraw[sequence])) * Month1DryWheySigma + LN(Month1ExpectedDryWheyPrice),4) - Round(0.5 * (Round(Month1DryWheySigma^2,4)),4),4) + Round(LN(Month2ExpectedDryWheyPrice),4) - Round(0.5 * (Round(Month2DryWheySigma^2,4)),4),4)

Round((SimulatedMonth1NonfatDryMilkPrice[sequence] + SimulatedMonth2NonfatDryMilkPrice[sequence] + SimulatedMonth3NonfatDryMilkPrice[sequence]) / 3.00,4)

Round(EXP(Round(Round(NORMSINV(Month3DryWheyPriceDraw[sequence])) * Month3DryWheySigma + LN(Month3ExpectedDryWheyPrice),4) - Round(0.5 * (Round(Month3DryWheySigma^2,4)),4),4))

Round((SimulatedMonth1DryWheyPrice[sequence] + SimulatedMonth2DryWheyPrice[sequence] + SimulatedMonth3DryWheyPrice[sequence]) / 3.00,4)
<table>
<thead>
<tr>
<th>For sequence 1 to 5000: SimulatedMonth1ButterfatPrice[sequence] = Simulated Month 1 Butterfat Price Internal 999.9999 4 decimals</th>
<th>Simulated Month 1 Butterfat Price Internal 999.9999 4 decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round((SimulatedMonth1ButterfatPrice[sequence] - ButterMakeAllowance) * ButterManufacturingYield, 4)</td>
<td>sequence = [1,...,5000] Prices are simulated for 5000 rounds</td>
</tr>
</tbody>
</table>
| Simulated Month 1 Butterfat Price | Internal
Butter Make Allowance A00835 12 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None |
| For sequence 1 to 5000: SimulatedMonth2ButterfatPrice[sequence] = Simulated Month 2 Butterfat Price Internal 999.9999 4 decimals | Simulated Month 2 Butterfat Price Internal 999.9999 4 decimals |
| Round((SimulatedMonth2ButterfatPrice[sequence] - ButterMakeAllowance) * ButterManufacturingYield,4) | sequence = [1,...,5000] Prices are simulated for 5000 rounds |
| Simulated Month 2 Butterfat Price | Internal
Butter Make Allowance A00835 12 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None |
| For sequence 1 to 5000: SimulatedMonth3ButterfatPrice[sequence] = Simulated Month 3 Butterfat Price Internal 999.9999 4 decimals | Simulated Month 3 Butterfat Price Internal 999.9999 4 decimals |
| Round((SimulatedMonth3ButterfatPrice[sequence] - ButterMakeAllowance) * ButterManufacturingYield,4) | sequence = [1,...,5000] Prices are simulated for 5000 rounds |
| Simulated Month 3 Butterfat Price | Internal
Butter Make Allowance A00835 12 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None |
| For sequence 1 to 5000: SimulatedButterfatPrice[sequence] = Simulated Butterfat Price Internal 999.9999 4 decimals | Simulated Butterfat Price Internal 999.9999 4 decimals |
| Round((SimulatedMonth1ButterfatPrice[sequence] - ButterMakeAllowance) * ButterManufacturingYield, 4) + SimulatedMonth2ButterfatPrice[sequence] + SimulatedMonth3ButterfatPrice[sequence]) / 3.00,4) | sequence = [1,...,5000] Prices are simulated for 5000 rounds |
| Simulated Month 1 Butterfat Price | Internal
Simulated Month 2 Butterfat Price | Internal
Simulated Month 3 Butterfat Price | Internal
Butter Make Allowance A00835 12 999.9999 None
Butter Make Allowance A00835 12 999.9999 None
Butter Make Allowance A00835 12 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None
Butter Manufacturing Yield A00835 5 999.9999 None |

Page 5 of 10
For sequence 1 to 5000: SimulatedMonth1OtherSolidsPrice\[sequence\] = Simulated Month 1 Other Solids Price Internal 999.9999 4 decimals

Round((SimulatedMonth1DryWheyPrice[sequence] - DryWheyMakeAllowance) * DryWheyManufacturingYield,4) sequence = \([1,...,5000]\) Prices are simulated for 5000 rounds

For sequence 1 to 5000: SimulatedMonth2OtherSolidsPrice\[sequence\] = Simulated Month 2 Other Solids Price Internal 999.9999 4 decimals

Round((SimulatedMonth2DryWheyPrice[sequence] - DryWheyMakeAllowance) * DryWheyManufacturingYield,4) sequence = \([1,...,5000]\) Prices are simulated for 5000 rounds

For sequence 1 to 5000: SimulatedMonth3OtherSolidsPrice\[sequence\] = Simulated Month 3 Other Solids Price Internal 999.9999 4 decimals

Round((SimulatedMonth3DryWheyPrice[sequence] - DryWheyMakeAllowance) * DryWheyManufacturingYield,4) sequence = \([1,...,5000]\) Prices are simulated for 5000 rounds

For sequence 1 to 5000: SimulatedOtherSolidsPrice\[sequence\] = Simulated Other Solids Price Internal 999.9999 4 decimals

Round((SimulatedMonth1OtherSolidsPrice[sequence] + SimulatedMonth2OtherSolidsPrice[sequence] + SimulatedMonth3OtherSolidsPrice[sequence]) / 3.00,4) sequence = \([1,...,5000]\) Prices are simulated for 5000 rounds
For sequence 1 to 5000: SimulatedMonth1ProteinPrice[sequence] =

$\text{Simulated Month 1 Protein Price} = \text{Internal} \times 999.9999$ 4 decimals

<table>
<thead>
<tr>
<th>Cheese Make Allowance</th>
<th>A00835</th>
<th>15</th>
<th>999.9999</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese Manufacturing Yield Casein</td>
<td>A00835</td>
<td>8</td>
<td>999.9999</td>
<td>None</td>
</tr>
<tr>
<td>Cheese Manufacturing Yield Butterfat</td>
<td>A00835</td>
<td>9</td>
<td>999.9999</td>
<td>None</td>
</tr>
</tbody>
</table>

For sequence 1 to 5000: SimulatedMonth2ProteinPrice[sequence] =

$\text{Simulated Month 2 Protein Price} = \text{Internal} \times 999.9999$ 4 decimals

<table>
<thead>
<tr>
<th>Cheese Make Allowance</th>
<th>A00835</th>
<th>15</th>
<th>999.9999</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese Manufacturing Yield Casein</td>
<td>A00835</td>
<td>8</td>
<td>999.9999</td>
<td>None</td>
</tr>
<tr>
<td>Cheese Manufacturing Yield Butterfat</td>
<td>A00835</td>
<td>9</td>
<td>999.9999</td>
<td>None</td>
</tr>
</tbody>
</table>

Prices are simulated for 5000 rounds.
For sequence 1 to 5000:
SimulatedMonth3ProteinPrice[sequence] =

Round(Round(((SimulatedMonth3CheesePrice[sequence] - CheeseMakeAllowance) * CheeseManufacturingYieldCasein, 4) +
Round(((SimulatedMonth3CheesePrice[sequence] - CheeseMakeAllowance) * CheeseManufacturingYieldButterfat, 4) - SimulatedMonth3ButterfatPrice[sequence] * ButterfatRetentionRate) * ButterfatToProteinRatio, 4), 4)

Simulated Month 3 Protein Price
Internal
999.9999
4 decimals

Simulated Month 3 Cheese Price
Internal
999.9999
None

Cheese Make Allowance
A00835
15
999.9999
None

Cheese Manufacturing Yield Casein
A00835
8
999.9999
None

Cheese Manufacturing Yield Butterfat
A00835
9
999.9999
None

Simulated Month 3 Butterfat Price
Internal
999.9999
None

Butterfat Retention Rate
A00835
10
999.9999
None

Butterfat To Protein Ratio
A00835
11
999.9999
None

For sequence 1 to 5000:
SimulatedMonth1NonfatSolidsPrice[sequence] =

Round(((SimulatedMonth1ProteinPrice[sequence] + SimulatedMonth2ProteinPrice[sequence] + SimulatedMonth3ProteinPrice[sequence]) / 3.00, 4)

Simulated Month 1 Nonfat Solids Price
Internal
9999.9999
4 decimals

Simulated Month 1 Protein Price
Internal
999.9999
None

Simulated Month 2 Protein Price
Internal
999.9999
None

Simulated Month 3 Protein Price
Internal
999.9999
None

For sequence 1 to 5000:
SimulatedMonth2NonfatSolidsPrice[sequence] =

Round((SimulatedMonth2NonfatDryMilkPrice[sequence] - NonfatDryMilkMakeAllowance) * NonfatDryMilkManufacturingYield, 4)

Simulated Month 2 Nonfat Dry Milk Price
Internal
9999.9999
4 decimals

Simulated Month 2 Nonfat Solids Price
Internal
999.9999
None

Simulated Month 2 Protein Price
Internal
999.9999
None

Nonfat Dry Milk Make Allowance
A00835
13
999.9999
None

Nonfat Dry Milk Manufacturing Yield
A00835
6
999.9999
None

For sequence 1 to 5000:
SimulatedMonth3NonfatSolidsPrice[sequence] =

Round((SimulatedMonth3NonfatDryMilkPrice[sequence] - NonfatDryMilkMakeAllowance) * NonfatDryMilkManufacturingYield, 4)

Simulated Month 3 Nonfat Dry Milk Price
Internal
9999.9999
4 decimals

Simulated Month 3 Nonfat Solids Price
Internal
999.9999
None

Simulated Month 3 Protein Price
Internal
999.9999
None

Nonfat Dry Milk Make Allowance
A00835
13
999.9999
None

Nonfat Dry Milk Manufacturing Yield
A00835
6
999.9999
None

For sequence 1 to 5000:
SimulatedNonfatSolidsPrice[sequence] =

Round((SimulatedMonth1NonfatSolidsPrice[sequence] + SimulatedMonth2NonfatSolidsPrice[sequence] + SimulatedMonth3NonfatSolidsPrice[sequence]) / 3.00, 4)

Simulated Nonfat Solids Price
Internal
9999.9999
4 decimals

Simulated Month 1 Nonfat Solids Price
Internal
999.9999
None

Simulated Month 2 Nonfat Solids Price
Internal
999.9999
None

Simulated Month 3 Nonfat Solids Price
Internal
999.9999
None

sequence = [1,...,5000] Prices are simulated for 5000 rounds
Section 6: Component Expected Revenue Guarantee Calculations

<table>
<thead>
<tr>
<th>For sequence 1 to 5000: SimulatedRevenueAmount[sequence] = SimulatedButterfat Price * DeclaredButterfatTest + SimulatedProtein Price * DeclaredProteinTest + SimulatedOtherSolids Price * 5.7 + DeclaredCoveredMilkProduction * SimulatedYieldAdjustmentFactor[sequence] * DeclaredCoveredMilkProduction / 100.00</th>
<th>Simulated Revenue Amount</th>
<th>Internal</th>
<th>9999999999</th>
<th>0 decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round(1 - ComponentPriceWeightingFactor) * (SimulatedButterfat Price * DeclaredButterfat Test + SimulatedProtein Price * DeclaredProtein Test + SimulatedOtherSolids Price * 5.7, 4), 4)</td>
<td>Simulated Revenue Amount</td>
<td>Internal</td>
<td>9999999999</td>
<td>0 decimals</td>
</tr>
<tr>
<td>Component Price Weighting Factor Restricted Value is not published:</td>
<td>Round(1 - ComponentPriceWeightingFactor) * (SimulatedButterfat Price * DeclaredButterfat Test + SimulatedProtein Price * DeclaredProtein Test + SimulatedOtherSolids Price * 5.7, 4), 4)</td>
<td>Simulated Revenue Amount</td>
<td>Internal</td>
<td>9999999999</td>
</tr>
<tr>
<td>Round(1 - ComponentPriceWeightingFactor) * (SimulatedButterfat Price * DeclaredButterfat Test + SimulatedProtein Price * DeclaredProtein Test + SimulatedOtherSolids Price * 5.7, 4), 4)</td>
<td>Simulated Revenue Amount</td>
<td>Internal</td>
<td>9999999999</td>
<td>0 decimals</td>
</tr>
<tr>
<td>Component Price Weighting Factor Restricted Value is 1:</td>
<td>Round(1 - ComponentPriceWeightingFactor) * (SimulatedButterfat Price * DeclaredButterfat Test + SimulatedProtein Price * DeclaredProtein Test + SimulatedOtherSolids Price * 5.7, 4), 4)</td>
<td>Simulated Revenue Amount</td>
<td>Internal</td>
<td>9999999999</td>
</tr>
<tr>
<td>Component Price Weighting Factor Restricted Value is 0:</td>
<td>Round(1 - ComponentPriceWeightingFactor) * (SimulatedButterfat Price * DeclaredButterfat Test + SimulatedProtein Price * DeclaredProtein Test + SimulatedOtherSolids Price * 5.7, 4), 4)</td>
<td>Simulated Revenue Amount</td>
<td>Internal</td>
<td>9999999999</td>
</tr>
<tr>
<td>Expected Revenue Guarantee = Round(ExpectedRevenueAmount * CoverageLevelPercent)</td>
<td>Expected Revenue Guarantee</td>
<td>P18</td>
<td>51</td>
<td>9999999999.99</td>
</tr>
</tbody>
</table>

The value determined by multiplying the declared component tests by the expected component value and then multiplying by the volume of milk Declared, divided by 100.
Section 7: Total Premium and Liability Amount Calculations

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimulatedLoss[sequence] = Expected Revenue Guarantee - SimulatedRevenueAmount[sequence], 0.00,2</td>
<td>Simulated Loss</td>
</tr>
<tr>
<td>SimulatedLossAverage = SimulatedLossAverage / 5000.00, 0.02 * DeclaredCoveredMilkProduction / 100.00, 2</td>
<td>Simulated Loss Average</td>
</tr>
<tr>
<td>PreliminaryTotalPremium = Preliminary Total Premium * LoadingFactor</td>
<td>Preliminary Total Premium</td>
</tr>
</tbody>
</table>

Section 8: Subsidy and Producer Premium Amount Calculations

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubsidyAmount = Round(TotalPremiumAmount * SubsidyPercent,0)</td>
<td>Subsidy Amount</td>
</tr>
<tr>
<td>ProducerPremiumAmount = MAX(Round(TotalPremiumAmount - SubsidyAmount,0),1)</td>
<td>Producer Premium Amount</td>
</tr>
</tbody>
</table>

Section 9: Beginning Farmer and Rancher (BFR), Veteran Farmer Rancher (VFR), and Conservation Compliance (CC) Subsidy Calculations

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseSubsidyAmount = Round(TotalPremiumAmount * SubsidyPercent,0)</td>
<td>Base Subsidy Amount</td>
</tr>
<tr>
<td>BFR/VFR SubsidyAmount = Round(TotalPremiumAmount * 0.10 * (1 - CCSubsidyReductionPercent),0)</td>
<td>BFR/VFR Subsidy Amount</td>
</tr>
<tr>
<td>CCSubsidyReductionAmount = Round(BaseSubsidyAmount * CCSubsidyReductionPercent,0)</td>
<td>CC Subsidy Reduction Amount</td>
</tr>
<tr>
<td>SubsidyAmount = Round(BaseSubsidyAmount + BFR/VFR SubsidyAmount - CCSubsidyReductionAmount,0)</td>
<td>Subsidy Amount</td>
</tr>
<tr>
<td>ProducerPremiumAmount = MAX(Round(TotalPremiumAmount - SubsidyAmount,0),1)</td>
<td>Producer Premium Amount</td>
</tr>
</tbody>
</table>