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Executive Summary 
In March 2010, Sumaria Systems Inc. (Coble, et al. 2010) provided a comprehensive review of 
the methodology and procedures used to determine APH target rates and COMBO rating under 
the Federal Crop Insurance Program.1 The study provided several recommendations for 
modifying the current APH and Combo methodologies and suggested further evaluation of 
several other issues.  One of those issues involved the current RMA practice of using equally-
weighted, adjusted, historical, loss cost experience for a county/crop program as the cornerstone 
of the current rating procedures.  Sumaria Systems was subsequently contracted by the USDA/ 
Risk Management Agency (RMA) to conduct additional analysis of this issue.  The project 
commenced in September 2010.   This report evaluates alternative methodologies for weighting 
and adjusting historical experience used to develop rates for the APH product.   
 
The statement of work for this project directs Sumaria to perform a detailed investigation and to 
develop an optimal methodology for weighting, or otherwise adjusting, RMA’s historical loss 
cost data in order to maximize its statistical validity for developing premium rates.  
 
We were directed to consider the Palmer Drought Index, other weather variables, changing 
severity of loss costs over time, and program participation changes over time.   The statement of 
work also directed us to deliver a report that offers multiple approaches that compare and 
contrast the varying combinations of the factors based on statistical validity, feasibility, 
sustainability, and a balance of improvement versus complexity. That is the purpose of this 
report.  It is expected that the Government will select the approach that best fits its needs and that 
is optimal for the program. We will also provide an implementation plan and models that RMA 
can incorporate into its rating methodology.  
 
Our team, including experienced crop insurance analysts, a leading professional actuary, and a 
professional climatologist, has reviewed the materials provided by RMA and additional materials 
that we collected independently.  The credentials of our team are discussed in greater detail in 
Appendix C of this report.   

This report examines a number of conceptual considerations related to the issues we were tasked 
to address.  Our team evaluated the alternative weather data available and issues associated with 
using those data to characterize weather probabilities.  We have conducted analysis nationally for 
nine crops (apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, and wheat).  Based on 
this analysis we make several recommendations. 

 Weather Probabilities 

Recommendation 1. – We recommend that RMA use Climate Division Data for calculating crop-
specific weather indexes.  We believe the weather data collection that best meets the weather-
data criteria outlined in Section 4 of this report is the National Climatic Data Center’s Time Bias 
                                                           
1 This report is available at http://www.rma.usda.gov/pubs/2009/comprehensivereview.pdf. 
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Corrected Divisional Temperature-Precipitation-Drought Index data, also call the Climate 
Division Data.  The climate division data provide several drought indexes and other weather 
variables time-aggregated to the monthly level and spatially-aggregated to the climate division 
level for the years back to 1895.  Thus, it allows RMA to compare the weather experience 
incurred by the modern program to weather extending 80 years past the 1975 cut-off of loss-cost 
data.    
 
Recommendation 2. . – We recommend that RMA use fractional logit models estimated at the 
climate division level to relate loss cost experience to the Palmer Drought Severity Index (PDSI) 
and Cooling Degree Days (CDD).  Time period variants of both weather indicators should be 
used for different crops and locations. An out-of-sample forecasting competition is suggested to 
select the time-period/variables for a crop/climate division, and if the models are not found 
statistically significant we recommend no weather weighting.  This process creates a weather 
index from 1895-present which ranks the growing conditions experienced in each year. 
 
Recommendation 3. – Given recommendation 2 we propose that RMA categorize the loss cost 
experience observed over the period chosen into weather ‘probability bins’ or categories.  These 
bins would be chosen according to an incremental procedure which would select a parsimonious 
number of bins for the crop/climate division.  Once observed loss costs are categorized within 
bins, all historical loss costs within a bin are given equal weather probability.  The bins 
recommended would have variable width but equal probability.  The variable width binning 
process we propose ensures that at least one year during the rating period is classified in each 
bin, thereby providing proper weights that reflect all of the historical weather data. 
 
Recommendation 4. – While not a directive in the statement of work, a conclusion reached 
during our analysis is that RMA should use all years available to calculate the catastrophic load 
and that extreme loss costs within the catastrophic load should be weighted using the weather 
index probabilities.  Further, we recommend changing the catastrophic load cap to the 90th 
percentile and reducing the aggregation region for catastrophic load from the state level to a 
climate division, which is consistent with the weather weighting procedure.  We also recommend 
dampening of the weight given to the most extreme weather years.  Specifically, if the weather 
index for a particular year is above the 97th percentile, we recommend that the weight given to 
that year’s input to the catastrophe load be adjusted to reflect the percentile of the weather index.  
That is, if the data span 30 years of experience, a year with a weather index at the 98th percentile 
should be given 2% (1-in-50) weight rather than 3.33% (1-in-30) weight.  The weight taken from 
the adjusted year should then be spread evenly among the remaining years.     
 
 
Changing Severity of Loss Costs 
 
We were also directed to consider changing severity of loss costs over time due to technological 
advances and changing agronomic conditions. Finally we were asked to address how to 
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incorporate program participation changes over time in a way that represents the current 
program. In response we add: 
 
Recommendation 5. – A variety of factors suggests non-stationarity in some RMA loss cost data.  
Primary factors we perceive in RMA data are an expanding participant pool, evolving production 
systems, the advent of biotechnology, and changing program underwriting rules.  In many cases 
it is difficult, if not impossible, to disentangle these effect.  We recommend that RMA use 
adjustments to remove non-stationarity from the loss cost history when statistical analysis 
supports the adjustment.  We recommend estimating these adjustments at the state or more 
aggregate level for a crop and that weather should be taken into account when these models are 
estimated.  Further, symmetric caps on the magnitude of the adjustments should be imposed to 
avoid excessive modification of the loss history in a particular location.  We examined several 
approaches including: 

1. A discrete adjustment to data prior to 1995 
2. A discrete adjustment to data prior to 1995 plus a trend adjustment since 1995 
3. Adjusting loss cost based as a function of net acres insured 
4. Shortening the loss history for base rates (not catastrophic loads) to twenty years 
5. Decadal weights comparing median loss cost bins 
6. A linear recency effect 
7. Net acre weights within probability bins 

 
 
All of these approaches have instances where they appear to perform well.  The first three 
procedures require model estimation while the fourth is a procedure that would only slightly alter 
current RMA practices.  We believe all could be made compatible with other RMA procedures 
and with weather weighting.  However, we stress that where statistical analysis indicates non-
stationarity in the loss cost history, making no adjustment results in a rate that is not actuarially 
sound.  Ultimately we recommend a combination of option 1, 4 and 7. The discrete adjustment 
for data prior to 1995 would be applied to the adjusted loss cost data first.  Specifically we would 
estimate the effect at a national level and calculate a percentage difference by state using the 
effect relative to the post-1995 average loss cost.  Shortening the loss history for base rates to 20 
years while using more years for catastrophic loading reflects the recognition that a longer time 
series is needed to capture extreme events than for the risk quantified in the base rate.  Finally, 
using net acre weighting within probability categories “bins’ recognizes the additional credibility 
of experience that is based on more exposed acres.       
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1. Study Background and Motivation 
 
The Federal Crop Insurance Program provides insurance products to agricultural producers in the 
U.S.  In 2010, the program insured 256 million crop acres with a total liability of $78 billion.  
This public-private partnership involves private delivery of products designed and rated by 
USDA.  Private firms sell the product and are compensated for delivery and offered reinsurance.  
Producers are offered subsidized rates for the various insurance products.  These rates are 
predicated upon RMA being able to quantify the actuarially fair insurance rate.  Specifically, the 
Federal Crop Insurance Act was amended by the Agricultural Risk Protection Act of 2000 
(PL106-224) to state the following regarding rate making:  
 
1) Sec. 508(i) (2) states “Review of rating methodologies. To maximize participation in the 
Federal crop insurance program and to ensure equity for producers, the Corporation shall 
periodically review the methodologies employed for rating plans of insurance under this subtitle 
consistent with section 507(c)(2).”  
 
2) Sec. 508(i) (3) states “Analysis of rating and loss history. The Corporation shall analyze the 
rating and loss history of approved policies and plans of insurance for agricultural commodities 
by area.”  
 
3) Sec. 508(d) (2) states “the amount of the premium shall be sufficient to cover anticipated 
losses and a reasonable reserve.”  
 
These three statements can be interpreted through standard actuarial definitions. The Statement 
of Principles Regarding Property and Casualty Insurance Ratemaking identifies a fundamental 
principle of insurance ratemaking as: “A rate is an estimate of the expected value of future 
costs.” Typically, the largest component of the rate is the provision for losses. While there are 
other important considerations in rate development, most of the actuarial foundations of 
ratemaking are intended to provide a framework for estimating the expected loss component of 
the rate.  
 
Because different crops are subject to different perils and, therefore, varying loss costs, the APH 
procedure establishes rates for each crop separately. It is rare that a single insured, for any 
insurance coverage, will have a sufficiently large history to allow expected losses to be derived 
solely from the insured’s own loss history. Thus, it is common and appropriate to consider the 
aggregate experience of a group of similar risks in developing rates. For APH, the aggregation is 
primarily done geographically. Rates are developed by geographic area, usually the county. 
Thus, for each crop, the APH ratemaking process typically derives LCRs (and consequently 
rates) by county.  
 
In March 2010, Sumaria Systems Inc. (Coble, et al. 2010) provided a comprehensive review of 
the methodology and procedures used to determine APH target rates and COMBO rating under 



Methodology Analysis for Weighting Historical Experience – 
Technical Report 

 

7 

 

the Federal Crop Insurance Program.2 The study provided several recommendations for 
modifying the current APH and Combo methodologies and suggested further evaluation of 
several other issues.  One of those issues involved the current RMA practice of using equally-
weighted, adjusted, historical, loss cost experience for a county/crop program as the backbone of 
the current rating procedures.  The current system uses a fairly lengthy data series of observed 
loss costs and gives each year’s experience equal weight.   
 
More specifically, RMA currently utilizes insurance experience back to 1975, where available. 
An earlier report by Josephson, et al. (2000) summarizes the history of how RMA has evaluated 
the length of experience period.3 According to this document, in a study in 1983 performed for 
FCIC, Milliman and Robertson (M&R) evaluated the length of the experience period. That study 
concluded “…. the FCIC should continue to use all available past history in the ratemaking 
process with possibly greater weight given to the more recent years.” (Josephson, et al. 2000, p. 
17). At the time of the 1983 study, each year was given equal weight in the determination of the 
county average. The suggestion of greater weight to more recent years was made because of 
concerns about the impact of amendments to the FCIC Act of 1980, and the possibility that the 
pre-1980 experience might not be relevant. The issue was addressed again by M&R in 1995, and 
in 1996. In the latter report, M&R again recommended no changes to equal weighting of all 
years.  
 
The review of the APH Rating Methodology by Sumaria (Coble, et al. 2010) recommended that 
RMA continue to use loss experience as the foundation of the rating system. However, the study 
recommended that RMA should evaluate alternative loss cost experience weighting procedures 
that incorporate additional information such as weather data, historical yields, or the amount of 
participation. The study recommended that RMA consider altering the weight given to its 
historical loss costs. The weights could potentially be based on a longer time series of weather 
variables. Another possibility, not necessarily mutually exclusive with the previous approach, is 
to adjust the weights according the level of participation (potentially measured by liability or the 
proportion of total acres insured). The study also suggested that changes in technology or, in the 
composition of the pool of insured producers over time may suggest that the loss costs observed 
from a particular historical event would be different in today’s crop insurance program (see 
Section 6.11 of Coble, et al. 2010).  
 
Sumaria Systems was subsequently contracted by the RMA to conduct additional analysis of this 
issue.  The project commenced in September 2010.   This report evaluates alternative 
methodologies for weighting historical experience used to develop rates for the APH product.  
The statement of work for this project directs Sumaria to perform a detailed investigation and to 
develop an optimal methodology for weighting, or otherwise adjusting, RMA’s historical loss 
cost data in order to maximize its statistical validity for developing premium rates. We were 
directed to consider the Palmer Drought Index and other weather variables to control for both 

                                                           
2 This report is available at http://www.rma.usda.gov/pubs/2009/comprehensivereview.pdf. 
3 This report is available at http://www.rma.usda.gov/pubs/2000/mpci_ratemaking.pdf . 
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good and bad growing conditions.  We were also directed to consider changing severity of loss 
costs over time due to technological advances and changing agronomic conditions. Finally we 
were asked to address how to incorporate program participation changes over time in a way that 
represents the current program.  

The statement of work also directed us to deliver a report that offers multiple approaches that 
compare and contrast the varying combinations of the factors based on statistical validity, 
feasibility, sustainability, and a balance of improvement versus complexity. That is the purpose 
of this report.  It is expected that the Government will select the approach that best fits its needs 
and that is optimal for the program. We will then produce a second report presenting an 
implementation plan or model that RMA can incorporate into its current methodology.  
 
Our team, including experienced crop insurance analysts, a leading professional actuary, and a 
professional climatologist, has reviewed the materials provided by RMA and additional materials 
that we collected independently.  The credentials of our team are discussed in greater detail in 
Appendix C of this report.   
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2. Background Summary of the Current RMA Loss Cost Rating System 
 
The RMA rating procedures use historical loss cost experience for a crop in a county in 
developing county base rates. These county base rates are then adjusted for factors such as 
coverage level, unit format, crop type, and crop practice to obtain a rate for an insured unit. In 
this chapter we describe procedures followed in developing county base rates. The summary 
provided here draws heavily from detailed descriptions contained in an RMA internal document 
entitled “Rate Methodology Handbook: Actual Production History” which is applicable for 2011 
and subsequent years.  We also draw upon the aforementioned 2010 Sumaria review (Coble et al. 
2010).   
The Statplan database forms the foundation for the APH rating process. The result of these 
procedures is the construction of a set of data tables. Two of these tables, the production ratio 
table and the county summary table, contain the essential data that support the actual production 
history rating process. The production ratio table contains the data used in computing production 
ratios, which are discussed in subsequent sections, and the county summary table contains 
information summarized at the county level and used in evaluating specific risks such as 
prevented planting.  The following are several specific issues addressed in the development of 
the Statplan database. 

• Adjusting for Winter Kill Experience in winter wheat and barley. 
• High Risk Experience -- Because high-risk experience is not considered to be consistent 

with other land in a county, this insurance experience is excluded from the production 
tables upon which base rates are determined. 

• Whole Farm Units-- The Revenue Assurance product offered whole farm units which 
combine the coverage for two or more crops in a county. Experience for this combined 
coverage cannot be segregated by crop and is therefore excluded from all Statplan data 
tables. 

• Prevented Planting-- Prevented planting is not considered to be a production loss and so 
prevented planting indemnities and associated liability are excluded from the production 
ratio tables. These indemnities and liabilities are captured in other Statplan databases for 
use in prevented planting reviews.  

• Written Agreements-- Insurance experience established under a written agreement is 
excluded from the standard Statplan rating data. 

• Late Planted/Planting Adjustments-- Late planting insurance experience is first adjusted 
to reflect the correct liability/coverage (if it were not late planted) and is then included in 
the Statplan database.  

• Replants-- Indemnities that are paid to insured producers to cover the cost of replanting 
are not included in the base rate calculations and thus are not stored in the yield ratio or 
county summary tables. However, the liability and any indemnities paid on replanted 
acreage are included in the Statplan tables and in base rate development because the 
acreage is planted under conditions that are expected to produce at least the guaranteed 
yield. 
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• Revenue Adjustments-- Three revenue insurance products were introduced by the RMA in 
the mid 1990s--Revenue Assurance (RA), Crop Revenue Coverage (CRC), and Income 
Protection (IP). All of these products insure producers against shortfalls of gross revenue 
below a guaranteed level and in all three the yield risk component of the coverage is 
based on APH procedures. RMA transforms indemnities for CRC and RA to be equal to 
what they would have been had the coverage been based on the fixed APH Price Election 
rather than the revenue plan base price and harvest price. The result is a calculated 
indemnity, for insured units that are indemnified, that is equal to what the indemnity 
would have been under APH yield insurance. This achieves consistency within the 
Statplan data across the APH yield insurance product, CRC and RA, with or without a 
harvest price feature or option4. 

• Revenue Adjustments for Replanted Acreage-- The process described in the previous 
section is used to convert revenue product loss experience to equivalent yield losses. A 
similar process is followed for replant losses. 

• Coverage Level--The common coverage level used as the base for APH rating is the 65% 
coverage level. Therefore, loss experience for units insured at levels above 65% must be 
adjusted down to reflect what it would have been at the 65% coverage level and loss 
experience for coverage levels below 65% must be adjusted upward to what it would 
have been at the 65% coverage level.   

• Once RMA has adjusted existing loss experience in the Statplan data development 
process, the actuarial branch begins a multi-step process to develop a target rate for each 
county/crop program.  In effect, the target rate is the rate RMA believes should serve as 
the base upon which rates in a county are anchored.     
 

RMA uses a catastrophic loading procedure to reduce the influence of outliers in the experience 
of a county/crop program.  Because crop losses are often characterized by infrequent but severe 
losses, even several decades of county loss experience may be subject to sampling error.  
Catastrophic loading is an actuarial technique used to mitigate the effect of sampling error when 
the true magnitude of sampling error is not known.  Catastrophic loading is intended to remove 
anomalous experience from the county/crop data while preserving normal loss experience.  In 
general, losses deemed catastrophic are spread across all counties for a crop in a state. Thus, the 
capping of loss cost experience in a county/crop program is not a load in the sense that it is an 
additional factor added to rates, but rather it redistributes loss experience within a state/crop 
program.  
 
The current RMA procedure censors the county loss experience at the 80th percentile of the 
historical county experience. No distributional assumptions are required for the procedure.  To 
illustrate this, assume 30 years of data are available for the county/crop program.  Then the 80th 

percentile of the loss cost is the 24th highest observed loss cost ratio (note when the percentile 
does not fall on a discrete observation, a linear interpolation is used).  All indemnities above the 

                                                           
4 IP experience is not included in APH base rate calculations because of differences in product design. 
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truncation point are aggregated to the state/crop program level.  For a county, the catastrophic 
(CAT) indemnity is calculated as follows: 
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3. Conceptual Assessment of Potential Weighting and Loss Cost Adjustments 
 
a. Weather Weighting 

 
One issue that should be considered in the weighting of historical loss experience is the 
representativeness of weather experience reflected in the Statplan data used for calculating 
county base rates. Statplan is a loss experience data set that utilizes information from 1975 
(where available) onward (i.e. 35 years of data in 2010). In many lines of insurance, 35 years of 
loss history would be considered a very “long” time series of data to use in rate making. 
However, 35 years may be a relatively short series for accurately reflecting probabilities of the 
weather events that are a dominant factor in crop losses. 
 
For example, given the current use of simple averaging of loss cost data to calculate county base 
rates, the severe loss years of 1988 and 1993 are each given 1/35 weight but the long term 
frequency of the weather events that drove these losses may be greater or less than 1/35.  It could 
be that the 1988 drought was a 1 in 20 year event rather than a 1 in 35 year event. If so, a larger 
weight than 1/35 would be appropriate for that year. Alternatively, it could be that drought 
events observed in 1988 only occur 1 in 50 years in a longer weather time series and should be 
given less weight than 1/35. The intent of weather weighting of loss cost data is to bring 
additional information from a longer series of weather variables to more properly weight the loss 
cost data used to calculate average county rates. 
 
In developing a system to weight short loss experience data using longer weather/climate data, 
one has to consider the following issues: (1) the weather or climate data to use for weighting 
(e.g., the length of the data,  the degree of coverage and/or level of aggregation, the relationship 
of such weather to losses, and the availability of weather variables), and (2) the development of a 
procedure to properly weight each year in the short loss data (e.g., categorizing each loss data 
year and creating weights for each year in a manner that is consistent with other parts of the 
rating process). 
 
Weather/Climate Data 

There is an abundance of weather data available in the US that can be used for weather-based 
weighting of loss experience data. However, there are several issues to consider in choosing the 
weather data to be used. First, one has to consider the length of the different climate data series 
that are available. In the context of weighting insurance data, one would like to have the longest 
series of historical weather data available. This would help ensure that different weather 
outcomes, especially the rare extreme weather events that cause losses, would be adequately 
represented in the longer data series. Information about the probabilities of different weather 
events will be better captured if one has a very long climate data series. 
 
However, the need for a long data series must be balanced with the second issue to consider – the 
degree of coverage and level of aggregation. For example, there may be weather data that are 
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available for 200 years, but these data sets may only contain data for a particular part of the 
country and/or only at the national level. Crop insurance covers a large portion of the US and so 
weather data covering most or all states are needed.  In addition, there is significant 
heterogeneity of the weather events that drive losses at the county level for a particular year. 
There is value in having data at a lower level of aggregation (i.e., county level or 5 x 5 mile 
grids) rather than at the national level only. However, in using weather/climate data at lower 
levels of aggregation, it may be the case that data interpolation methods were involved in the 
construction of the data, especially at the sub-county level where there frequently are no weather 
stations in a particular location. 
 
Another factor to consider in choosing the weather or climate data to use in weighting loss 
experience is the availability of different weather variables that can be used. Longer series of 
climate data may be available for some basic variables like temperature or precipitation, but 
variables like drought indexes may not be available for this longer period of time. Climate data at 
lower levels of aggregation and with wider coverage may only be available for certain weather 
variables and may be absent for others. Hence, to have flexibility in determining the weather 
variables that can help to explain losses, the availability of different weather variables in a 
particular climate data set is also an important consideration. 
 
Finally, in choosing climate data for weather weighting crop insurance loss cost data, the source 
of the data and the availability of the data in the future are also important considerations. The 
source of the climate data has to be reliable and must have a good reputation in terms of 
reporting weather/climate data. Moreover, there should be a reasonable expectation that the 
weather/climate data will continue to be available in the future to support updating of weather 
weights as more data become available. 
 
Development of Weather Weighting Procedure 

Once the weather data have been chosen, the next thing to consider is the development of a 
weather weighting procedure. The first important issue to evaluate is the choice of weather 
variables to use in classifying and weighting each loss experience year. A number of weather 
variables during a specific time period could be related to crop losses and one approach is to 
simply include all available weather variables (and all time periods) that exist in the chosen 
climate data. However, this straightforward approach would add complexity to the procedure and 
might generate a lot of noise, especially if there are a number of weather variables in specific 
time periods that do not have a statistically significant effect on losses. Further, there are often 
many different weather variables available such that the capacity to use everything that might 
exist is limited.  Hence, there has to be a balance between simplicity/noise in the data and the 
number of weather variables (for different time periods) used in the weighting. Consulting the 
professional literature should provide some guidance as to which weather variables are relevant 
to yields and what time period to use (i.e., what weather variable at what time periods best 
explain crop losses). Procedures to evaluate the “best” combination of weather variables to use 
should also be considered. For example, regressions of losses on different weather variables at 
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different time periods could be conducted and in-sample or out-of-sample model fitting criteria 
such as the adjusted r-square or a root mean squared error (MSE) can be used to evaluate the best 
combination of weather variables to be used in the weighting. Presumably, the weather variables 
and time periods chosen will be the ones that “best” explain crop losses over time. A weather 
index can then be created using the chosen weather variables and time periods. One issue to 
consider here is the level of aggregation to use in constructing the combinations of weather 
variables and time periods to be used.  In other words, will the same weather variables and time 
periods be used for each county, state, and crop? Alternatively, is one combination appropriate 
for the entire nation?   
 
Based on the weather index developed, each year in the “shorter” loss experience data set has to 
be classified relative to the longer term weather index. This will allow for developing the proper 
weights to assign to each of the actual loss experience years in the shorter data series. There are a 
number of ways to classify a year and assign a weight. One approach is to generate a histogram 
with equal bin widths and variable probabilities (or frequencies) (see Coble et al., 2010, p. 85 
and Figure 3.1).5 The bins or groupings with equal widths can then be used to classify each year 
of the loss experience (i.e. which bin does the loss year belong to given the actual experience) 
and the probability associated with the bin assigned to the year will serve as the weather weight. 
An alternative to this approach is to develop variable bin or grouping widths with equal 
probabilities associated with each bin (See Figure 3.2). The bins or groupings will again be used 
to classify each year, but since these are variable width bins with equal probability, there is no 
need to have differential weights for each actual year of experience. In both of these procedures, 
one has to evaluate the number of bins to be used and make sure that all bins are represented in 
the shorter loss data. If not, the weighted average may not fully reflect the available historical 
experience.  In addition, the complexity of the procedure and the ease of implementation should 
also be a considered in choosing the approach to classify and assign weights to the actual loss 
years. 
 
Another issue to consider in the development of the weather weighting procedure is its 
consistency with other rating procedures such as the catastrophic loading (i.e. state excess load). 
To the extent possible, the proposed weather weighting procedure should allow for the 
catastrophic loading currently used by RMA, which caps the adjusted loss cost ratio at the 80th 
percentile for all available years. There should also be some conceptual evaluation of the 
appropriateness of the catastrophic loading methods, given the introduction of weather weighting 
in the rating system. 

  

                                                           
5 Alternative methods such as generating kernel densities or fitting parametric distributions can also be used instead 
of histograms. However, one should recognize that these more complex procedures may have implications for 
implementation. One has to weigh the relative benefits of more complex approaches against the efficiency and ease 
of more simple approaches (like using a histogram). 
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Figure 3.1. Histogram with equal bin widths and variable probabilities for each bin (508 
compliant data is in Appendix D-1). 
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Figure 3.2. Variable bin widths with equal probabilities for each bin. 
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 b. Conceptual Assessment of Non-stationarity in Loss Cost 

 

The objective of ratemaking is to provide an estimate of the expected value of future costs.  
While historical exposure and loss experience provide the starting point for ratemaking, the 
relevance of the historical experience must always be considered.  The Statement of Principles 
Regarding Property and Casualty Insurance Ratemaking6 (Casualty Actuary Society 1988) notes 
that ratemaking begins with historical experience, but then goes on to discuss necessary 
considerations in the ratemaking process that may affect the reliance the actuary can place on the 
data.  Among other considerations, the Principles (Casualty Actuary Society 1988) call on the 
actuary to consider the following factors. 

• Homogeneity of the data: including subdividing or combining data so as to minimize the 
distorting effects of operational or procedural changes.  

• Trends: past and prospective changes in claim costs, frequencies, and exposures. 
• Policy provisions: past and prospective changes in coinsurance, coverage limits, 

deductibles and other policy provisions. 
• Mix of business: past and prospective changes in the distribution of policies among 

deductible, coverage selections or type of risk that may affect frequency or severity of 
claims. 

• Operational changes: past and prospective changes in the marketing or underwriting 
process. 

 

Where the effect of such changes can be measured (historically) or projected (prospectively), the 
actuary adjusts the data accordingly.  There is extensive actuarial literature on adjustments such 
as trending of loss and premium or exposure data, including a standard practice on trending 
procedures in ratemaking (Actuarial Standards Board 2009).7   

The property/casualty ratemaking process is a dynamic activity – insured characteristics, the mix 
of business and the economic environment are constantly shifting, making incorporation of 
appropriate adjustments for such changes extremely difficult even for relatively recent 
experience.  Precedent and common usage within the actuarial profession steer the actuary to 
minimize the length of time spanned by the historical data used in the ratemaking process to just 
enough to be statistically reliable.  In the absence of statistically reliable data beyond a relatively 
short historical time period, actuaries turn to credibility weighting against other contemporary 
estimates rather than expanding the history. 

The reasoning behind using a relatively short time span for an insurer in a competitive market is 
clear: an insurer’s mix of business is bound to shift over time as its market position changes.  

                                                           
6 This document can be found at http://www.casact.org/standards/princip/sppcrate.pdf. 
7 This document can be found at http://www.actuarialstandardsboard.org/pdf/asops/asop013_114.pdf. 
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However, it is not only competitive pressures that affect the mix within an insurer’s experience.  
Characteristics of the same insureds change over time: policyholders age, their homes become 
older, they turn over older vehicles for new ones, etc.  Commercial exposures also change over 
time: ownership changes, workplace safety improves, manufacturing processes are upgraded, etc.  
Insurer procedures also affect the underwriting results: policy provisions and settlement 
processes evolve over time.  Capturing – and appropriately reflecting – all such changes (and 
their interactions) is virtually impossible.   

Thus, it is typical for the actuary to consider how short a time period is required for reliable 
ratemaking rather than how long is the period of available data.  In general, the larger the size of 
the exposure, the smaller the time period utilized by the ratemaking actuary.  While relatively 
small commercial carriers may use five to ten years of their own experience (weighted against 
rating bureau rates) and small personal lines carriers typically use five years of experience for 
property exposures and three to five years for automobile ratemaking, the National Council on 
Compensation Insurance (the rating bureau for workers compensation in most states) utilizes 
only two policy years in its standard ratemaking procedure.  The NCCI’s database encompasses 
virtually all of the insured business within a state, so the mix of business itself is not an issue; 
however, changes within the insureds themselves are still assumed to be present, and the NCCI 
limits the historical data in its ratemaking process to the minimum needed to produce a stable 
indication.    

In cases where the data over a short time span are not considered to be fully credible, it is also 
common practice for the actuary to use a somewhat longer time period (such as five years of data 
rather than three), but then to judgmentally assign less credibility to the older periods through the 
use of decreasing weights.     

The exception to the common practice of using fewer rather than more years of data exists in 
procedures used to account for very infrequent extreme events.  In that case, the actuary is forced 
to expand the time spanned by the ratemaking data in order to ensure that a reasonable estimate 
of the frequency and/or severity of large loss events are captured.  In order to preserve the 
desired short-term nature of the historical data used for the non-catastrophic portion of the rate, 
extreme events are sometimes projected entirely separately from the rest of the rate.  This 
method assumes that large events are independent of the smaller events, and also that the need to 
capture the extreme events in the rate outweighs shifts in the business that have not been 
captured by adjustments to the data.  Alternatively and more typically, extreme event data over a 
longer time period are analyzed in terms of their ratio to losses excluding extreme events, and 
then the projected extreme event ratio is applied to the non-catastrophic portion of the rate 
(Werner and Modlin 2010).8  This technique assumes that the extreme event ratio is relatively 
constant over time, and when it is applied to a non-catastrophic rate based on recent data, any 
changes in the mix of business will be captured.  This assumption tends not to hold in the event 
of natural catastrophes because (a) the time period of available data is too short to capture the 
potential range of loss outcomes and (b) the mix of business has shifted dramatically toward 

                                                           
8 This publication is available at http://www.casact.org/pubs/Werner_Modlin_Ratemaking.pdf   see pages 107-111. 

http://www.casact.org/pubs/Werner_Modlin_Ratemaking.pdf
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higher exposure areas, resulting in understated historical catastrophe to non-catastrophe ratios.  
The third method for catastrophe ratemaking involves direct modeling of the projected 
experience using a comprehensive tabulation of the exposures and an extreme event model 
derived from outside sources.  The insurance industry typically relies on sophisticated natural 
catastrophe models for its hurricane and earthquake exposures and on scenario-based models for 
extreme events such as terrorism. 

When applying these principles to RMA’s ratemaking process, we ask the following questions. 

• How are current conditions and the mix of business different from those reflected in the 
historical experience, and can the data be adjusted appropriately? 

o Are there identifiable significant shifts in the program that would be expected to 
affect all data prior to a particular date? 

o Are there identifiable trends in the experience that can be captured? 
• How many years of data are necessary for determination of the base rate? 
• How many years of data are necessary for determination of the catastrophe provision? 

 
Explicit Adjustments for Changes 

We have observed that there is a significant discontinuity in the data for many crops that occurs 
around 1995.  This corresponds to known changes in the way the program was administered and 
to a marked increase in market penetration.  Figure 3.3 provides evidence of the change in 
RMA’s book of business over the past three decades.  This graph plots the net acres insured for 
the six major crops (corn, soybeans, wheat, cotton, rice, barley) from 1981-2009.  One can see a 
distinct change in participation in 1995.  Prior to 1995 there had been a strong upward trend in 
participation but legislative changes in 1994 resulted in an almost doubling of insured acres in 
1995.  Further, after a slight drop off in 1996 and 1997 net acres have largely remained above 
170,000 acres.  While not shown in this graph, much of the 1995 participation was in 
catastrophic coverage policies, much of that acreage has now migrated to buy-up coverage.   

This type of program dislocation is appropriately captured in the ratemaking process by 
measuring the average effect of the change at a macro level and then applying an adjustment to 
the data prior to the change.  Comparable adjustments, for example, can be found in the NCCI’s 
process for accounting for benefit changes adopted by state legislatures.  The expected effect of 
the benefit change is calculated, and all experience prior to the change is adjusted uniformly for 
the expected effect so long as it remains in the ratemaking data.  Once the years prior to the 
change roll off, no adjustment is necessary.   

Even after adjusting for the 1995 change and after accounting for weather, there is a discernable 
downward trend in loss costs for some crops in some regions.  This may reflect changes in 
technology, including the increasing prominence of biotech crops, or other factors such as 
program changes or shifts in participation.  Again, the loss experience should be adjusted at least 
to current trend levels, and consideration should be given to whether the trend should be 
extrapolated into the future. 



Methodology Analysis for Weighting Historical Experience – 
Technical Report 

 

20 

 

As discussed in our prior study (Coble et al. 2010), if there have been shifts in the mix of 
business by type or practice – including shifts in technology that may not be directly reflected in 
the rates – the history should also be adjusted as much as possible to reflect current exposures.  
Such changes may be sufficiently captured in a trend analysis, but different changes can affect 
the experience differently, making it difficult to capture their effects using trend. 

These adjustments should be made to the uncapped adjusted loss costs. 

Selection of the Number of Years for Basic Ratemaking 

RMA’s program differs from most property/casualty exposures in that the loss experience is very 
highly correlated with weather patterns.  Even after capping the experience at the 80th or 90th 
percentile, it is still very important to capture a representative sample of weather outcomes 
within the ratemaking process.  The need to capture variation in the weather precludes the 
exclusive use of a very short time series of data as would be used in a more typical exposure.  
However, once we have identified how “typical” a year’s weather is via the weather index, we 
need only to ensure that we have captured sufficiently many observations within each range of 
weather outcomes.  Although the range of modeled loss costs within the bins at the high end of 
the weather index will be very large, the loss costs within high end bins will generally be capped 
by the catastrophe procedure prior to their use in the basic ratemaking procedure.  

We examined the number of observations (years of data) necessary to ensure that there is a high 
probability that no one year will get too much weight in the calculation due to being the sole 
observation in a very large bin.  With only 15 years of observations, the probability that the 
number of bins required to ensure at least one observation per bin will drop to five and that there 
will still be only one observation in one or more of the bins is about 25%.  With 20 years of data, 
that probability drops to about 8%, with 25 years it’s around 2.5%, and with 30 years of data it is 
about 1%.   

The high probability of placing 20% weight on a single observation indicates that 15 years of 
data are probably insufficient.  However, at some point actuarial judgment would lobby for 
dropping data years that are so far removed in time as to be unlikely to be representative of 
current experience: hence we recommend that RMA consider limiting the number of years of 
data for base ratemaking to 20 or at most 25. 

Judgmental Credibility Weighting for More Recent Data 

Given the long time span required to assure a reasonable weather distribution in the base rate 
calculation, generally accepted actuarial practice would consider judgmentally assigning less 
weight to older years in the data.  The effect of the necessary adjustments for program changes 
and trend discussed above tend to compound over time, causing the loss cost estimates from 
older years to become more and more dependent on estimated adjustments over time.  The 
proposed method for grouping the data by weather indexes would allow for a judgmental 
credibility weighting of observations based on time within the same weather index range. 
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Selection of the Time Period for the Catastrophe Load 

When considering the catastrophe load, however, the maximum amount of relevant data should 
be used.  RMA’s current procedure uses all available data, and we recommend that the full data 
series continue to be used, with the possible exclusion over time of early years if the covered 
acreage is very low relative to current acreage.  On the other hand, if the weather index for a 
particular year is above the 97th percentile, one may want to adjust the weight given to that year’s 
input to the catastrophe load to reflect the percentile of the weather index.  That is, if the data 
span 30 years of experience, a year with a weather index at the 98th percentile should be given 
2% (1-in-50) weight rather than 3.33% (1-in-30) weight.  The weight taken from the adjusted 
year should then be spread evenly among the remaining years.     

 
 

 

Figure 3.3 Net acre insured change from 1981 to 2009 (508 compliant data is in Appendix 
D-2). 
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4. Analysis of Weighting Issues 
 
a. Weather Weighting 

 
In order to quantify the relative frequency of extreme weather events that may be associated with 
loss experience, a reference set of climate data is needed that meets the following idealized 
criteria. 
 

(1) Provides climate information across all geographies where loss experience is 
observed. 

(2) Provides climate information at sufficiently local scales to explain local loss 
experience. 

(3) Provides the longest possible temporal record of climate events to ensure adequate 
analysis of the frequency of both normal and extreme climates. 

(4) Provides specific climate variables that provide meaningful explanation of loss 
experience. 

(5) Is operationally and routinely updated for use in future analysis and weighting. 
 
There are several climate datasets that partially meet these 5 criteria. First, the National Oceanic 
and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) Unified 
Precipitation Analysis is an interpolation of the available point-based precipitation gauge data 
collected by both NOAA and USGS. It meets the above criteria (1), (2), and (5), but provides 
only information on precipitation and has data only since 1948. Important information on 
temperature and drought are not provided, and these data do not allow for characterization of the 
relative frequency of known extreme drought events in the 1920s and 1930s nor hurricane or 
flooding events prior to 1948. 
 
A national analysis of Palmer Drought Severity Index developed by Dai et al. (2004) meets 
criteria (1), (3), and possibly (4), but is not updated regularly and provides drought severity 
information only every 250 kilometers which is insufficient to explain local loss experience. 
 
Another group of data that partially meet the criteria are atmospheric model simulations, 
including NCEP re-analysis and the North American Regional Reanalysis (NARR). These 
products meet criteria (1), (2), (4), and (5), but NCEP re-analysis (and similar) only provide 
information since 1948 and NARR only since 1979. 
 
The data collection that best meets all 5 criteria is the National Climatic Data Center’s Time Bias 
Corrected Divisional Temperature-Precipitation-Drought Index data, also called the Climate 
Division Data. Climate Division data provide monthly, serially complete information on 
temperature, precipitation, relative severity of dry and wet periods using drought indexes, and 
degree day metrics of heat and cold accumulation since 1895 for the continental United States, 
grouped into 344 divisions. Updates are operationally provided each month by NOAA National 
Climatic Data Center. A nice description of the history and current status of climate division data 
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is provided by Guttman and Quayle (1996). More technical details on the data and adjustment 
methods are provided in NCDC (1994) and Karl et al. (1996). 
 
Climate Division data are produced using more than 5,000 National Weather Service 
Cooperative observer gauge reports.  Climate Division boundaries group stations of similar 
climate into regions that follow state political borders.  In most cases, the climate division 
boundaries also follow county boundaries. However, in regions with more complex geography 
(including some states with complex topography and/or shorelines), climate division boundaries 
follow river basins within each state. While climate divisions were originally designed in 1912, 
boundaries were adjusted in the 1940s to align with crop reporting districts or drainage basins. 
The Climate Division boundaries are shown in Figure 4.1a.  In some instances climate divisions 
cross split counties.  The assignment of counties used in our study is shown in Figure 4.1b.  This 
allocation is based on relative area, geography and other factors. 
 
There are limitations to using Climate Division data.  Climate division boundaries are not always 
delineated for climate homogeneity. Especially in the mountainous terrain of the western US, the 
boundaries follow drainage basins and all locations within those boundaries are not likely to have 
very similar climate characteristics as climate changes quickly with changes in elevation. 
Another weakness is that the station network used for each division calculations is not constant. 
Stations move, cease operation, and new ones are introduced throughout the history of the 
observing network. This introduces some error with any divisional calculations. Another 
weakness is the accuracy of division level data prior to 1931, when regression equations are used 
to estimate division-level data from statewide average data that were standard during that period. 
 
Despite these weaknesses, Climate Division data provide the best operationally available climate 
information for crop loss analysis. They provide serially complete national coverage (with no 
missing data) at a geographic scale sufficient to characterize local climate extremes with a period 
of record sufficient to identify the relative frequency of climate events that may be associated 
with loss experience. 
 
Data Preparation 
 
The development of the weather weighting procedure starts by merging the climate data set (see 
previous sub-section) with RMA’s Statplan loss experience data (See Figure 4.1 for the different 
climate divisions within states). Note that the climate data are observed at the climate division 
level as described above, while the RMA Statplan data are reported at the county level.9 This 
dichotomy necessitates the use of an additional data set that assigns counties to particular climate 
divisions. Most counties are entirely or nearly entirely contained by a climate division. Counties 
associated with each climate division are provided by NOAA NCDC. However, as some 

                                                           
9 The county loss data utilized in this study are typically aggregated for all types/practices (with the exception of 
wheat, where the data are separated to identify  winter and spring wheat). This type of aggregation is consistent with 
the county level data used in calculating the base county rate (see Coble et al., 2010 p. 38).  
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divisions (especially in the mountainous western US) are delineated to follow drainage basins, 
there are many counties (approximately 300) that are split by climate division boundaries. We 
developed a data set such that each county is assigned to a specific climate division10 based on 2 
criteria: 

(1) Counties that are split by 1 or more climate divisions get assigned the climate division 
that covers the greatest amount of area in the county. 

(2)  For counties that are not easily assigned according to (1), the county is assigned to the 
larger climate division as the larger climate division should have more weather stations in 
the aggregated value and therefore should have more confidence in the weather 
representation. 

  
Based on this data set we are able to generate a merged climate-loss experience data set at the 
county and at the climate division levels. 
 
All counties within a particular climate division have the same weather data. The loss data also 
must be aggregated to the climate division level. This is done by summing the adjusted 
indemnities and liabilities of all counties within a climate division level and then calculating loss 
cost ratios (LCR) based on these summed amounts. The climate division data are used to 
generate a weather index that is needed for classifying loss years, while the county data are used 
in averaging the loss cost data to calculate a base county rate. 
 
 Weather Index Development 
 
A critical component in the development of a weather weighting approach is the choice of the 
weather variables that are used to determine the relative weights assigned to each year of loss 
data. One can use a single weather variable or a combination of different weather variables. 
Based on the literature (Wilhemy, Hubbard and Wilhite 2002) and the expert opinion of the 
climatologist in our team, we chose to examine a parsimonious set of weather variables – the 
Palmer Drought Severity Index (PDSI) and Cooling Degree Days (CDD).  PDSI is a particularly 
good weather variable to examine because it subsumes effects of both precipitation and 
temperature and provides a locally relative scale ranging from very wet to very dry conditions.  
Wilhemy, Hubbard and Wilhite 2002 show that much loss experience is associated with drought 
conditions, but PDSI also allows for very wet (flood) conditions that may also be associated with 
loss. CDD allows for examining heat units for a particular time period that affects crop growth. 
CDD is equivalent to Growing Degree Days (GDD) at base 65F, and allows exploration of loss 

                                                           
10 We build on the NOAA data set that assigns particular counties to climate divisions to develop this data set. This 
data set cannot be used ‘as is’ because there are a number of counties (~300) that are assigned to multiple climate 
divisions. The starting point for the assignments is based on the listing provide by NOAA NCDC. The climatologist 
in our team (Dr. Ryan Boyles) set a criterion to decide which county is uniquely assigned to a particular climate 
division (see previous section). In addition, there are county codes created by RMA that are unique to the program 
(and FSA), such as having East (code=155) and West (code=156) Pottawatamie, IA while the NOAA data simply 
have Pottawatamie, IA (code =155). These occurrences were accommodated in the data set developed. 
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experience that may be associated with extended cold or heat that would not be captured in 
PDSI. 
 
For the PDSI, we created two variables to represent positive PDSI and negative PDSI values. 
Positive PDSI values represent wet spells (i.e., larger positive numbers indicate more moisture) 
and negative PDSI values represent drought conditions (i.e., larger negative numbers represent 
more severe drought conditions). In addition, the positive and negative PDSIs we use are limited 
to the May-June and July-August periods (i.e., average May-June and average July-August 
PDSIs are utilized in the study). In summary, four PDSI measures are examined in the 
development of our weather index – May-June PDSI for positive values (mj_pdsi_p), May-June 
PDSI for negative values (mj_pdsi_n), July-August PDSI for positive values (ja_pdsi_p), and 
July-August PDSI for negative values (ja_pdsi_n). The CDD variables used in developing the 
weather index are total season CDD (from May to September) (total_cdd) and June-July total 
CDD (jaj_cdd).  The June-July periods are periods in which crop growth is frequently adversely 
affected by heat units.11   
 
Based on these six weather variables, an index is created by estimating a fractional logit 
regression model (at the climate division level) where the dependent variable is the climate 
division adjusted loss cost ratio and the independent variables are the six weather variables 
discussed above (See Papke and Wooldridge 1994). Fractional logit regression is used to account 
for the proportional nature of the data and censoring of loss costs at zero and one. This approach 
ensures that predicted values do not fall below zero or above one. 12 Based on our investigation 
of the degree of censoring of the data at zero, we believe that using the fractional logit is 
appropriate in this case. The degree of zero censoring in the data ranges from 6-11% for corn and 
soybeans, to about 30% for barley and potatoes (See Figure 4.2 for zero censoring in the corn 
data and Figure 4.3 for zero censoring in the barley data). On the other hand, the degree of 
censoring at one is significantly lower in the data and it is below 1% for most crops (the 
exception is apples with censoring at one of about 1.1% (See Figure 4.4)).   
 
To have an even more parsimonious model specification, an out-of-sample competition for each 
state is conducted to determine which combination among the six initial weather variables best 

                                                           
11 These six variables apply to all crops except winter and spring wheat. For winter wheat, the following variables 
are used: Sept./Oct average PDSI (positive and negative), April /May average PDSI (positive and negative), 
September to May total season CDD, and March to April total CDD. For spring wheat, the following variables are 
used: April/May average PDS (positive and negative), June/July PDSI (positive and negative), April to August total 
season CDD, and May to June total CDD. Further note that durum wheat type has been aggregated with spring 
wheat. 
12 Note that ordinary least squares (OLS) regression can also be used to estimate the index. The disadvantage of 
OLS is that predictions are not constrained to lie on the [0,1] interval.  Nevertheless, one can argue that the predicted 
loss costs here are only used as a “tool” to rank the years in terms of having “good” vs. “bad” weather (i.e., one 
could interpret negative values as indicating good weather years). The magnitudes of the predictions are not used 
‘per se’. Using the OLS model to estimate the model did not result in significantly different classifications of the 
loss years (relative to the fractional logit model). However, we recommend using the fractional logit given the 
degree of censoring in the data and the intuitive concept of limiting predicted loss costs between zero and one.   
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predicts losses (i.e., in this case which combination best predicts adjusted loss cost out-of-
sample).13 A minimum mean square error (MSE) criterion is used to evaluate the model with 
best out-of-sample predictions: 
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where ie  is the difference between the actual adjusted loss cost and a predicted adjusted loss cost 
(out of sample) based on the fractional logit regression model. A lower MSE means that there is 
a smaller discrepancy between the actual and predicted adjusted loss cost ratios and one would 
prefer the combinations of weather variables that produce the lowest MSE values. Note that we 
run independent regressions for each climate division within the state (i.e., climate divisions do 
not cross state lines), but undertake the out-of-sample competition to find the best combination 
of weather variables for the entire state. This implies that each regression model is estimated 
independently but a common specification, in terms of the weather variables included in the 
regression model, is applied for all climate divisions within a state for each individual crop.  In 
other words, for a crop in a state, the same weather variables are used in the loss-cost regression 
though parameters on weather variables may differ across climate divisions.  
 
To facilitate the out-of-sample competition for each state, we limit the number of weather 
variable combinations to be considered to seven: (1) May-June PDSI positive and May-June 
PDSI negative, (2) July-August PDSI positive and July-August PDSI  negative, (3) total season 
CDD and June-July total CDD, (4)   May-June PDSI positive, May-June PDSI negative, July-
August PDSI positive, and July-August PDSI  negative, (5) May-June PDSI positive, May-June 
PDSI negative, total season CDD, and June-July total CDD, (6) July-August PDSI positive, July-
August PDSI negative, total season CDD, and June-July total CDD, and (7) May-June PDSI 
positive, May-June PDSI negative, July-August PDSI positive, July-August PDSI negative, total 
season CDD, and June-July total CDD. Limiting the combinations to these seven choices and 
estimating the model for each crop, covering all states allows for less of a computational burden 
(i.e., runs not to exceed six hours for each crop). A hypothetical example of how an out-of-
sample competition works can be seen in Table 4.1. In this example, the lowest MSE is for 
combination 4. This means that, for this state, the best combination of weather variables to use in 
creating an index is the following: May-June PDSI positive, May-June PDSI negative, July-
August PDSI positive, and July-August PDSI negative. This combination best predicts loss costs 
out-of-sample. 
 

                                                           
13  In-sample fit criteria (such as in a stepwise regression using an adjusted R-squared criterion) could also be used 
to determine the optimal combination of weather variables. However, there are a number of criticisms to this 
approach (i.e., bias in the tests to iteratively choose the best variables from the sample, as well as over fitting) that 
makes out-of-sample competition more attractive in this case (See, for example, Rencher and Pun 1980 and Copas 
1983).  
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Once the optimal combination of weather variables is chosen for a particular crop and state, this 
combination of weather variables is used to produce a weather index for all of the climate 
divisions within the state producing the crop. Essentially, the predicted values of the “best” 
regression model specification are used as the weather index for each year of weather data. Using 
predicted values (i.e., predicted loss costs in this case), makes it possible to “backcast” a weather 
index for each year in which weather data are available (e.g., from 1895 onwards) even when 
there are no available loss experience data for the pre-crop insurance years (See Table 4.2). The 
relative probability of an extreme weather event (or an extreme loss event) can therefore be 
assessed over a 116 year time span (1895-2010) based on the predicted values. For example, the 
weather index for 1988 can be compared to other years from 1895 onward to determine the 
relative probability of this weather event occurring in the larger sample. 
 
A concern with using the predicted values is that there may be cases when even the “best” 
combination of weather variables does not produce a statistically significant model that explains 
losses over time. For example, in some climate divisions, the Pearson chi-square test of overall 
model fit for the preferred model specification is not statistically significant and the correlation 
of the predicted values with the actual loss costs is actually negative. This means that the weather 
variables we considered do not have enough power to explain the pattern of losses observed over 
time and that there is no significant positive correlation between the model predictions and the 
actual loss costs. We flag these cases, and the weighting methods based on the weather index 
developed are not applied (See Table 4.3). 
 
Example Results 
 
In Table 4.4, we show an example of the estimation results from a fractional logit regression 
model based on data for corn in Illinois (climate division 5) and soybeans in Indiana (climate 
division 1). In these examples, the independent variables used are the “best” weather variables 
chosen based on the out-of-sample forecasting competition. For example, based on  the out-of-
sample competition results for corn (See Table 4.5) the “best” weather variables to explain losses 
in Illinois are the CDD variables (total_cdd and jaj_cdd), which are used in the fractional logit 
regression in Table 4 (top panel).   
 
Once the out-of-sample competitions and fractional logit regression estimations are undertaken, 
we flag climate divisions where the chosen models do not produce a statistically significant 
model fit. In Table 4.6, we show examples for Indiana, Iowa, and Kansas where we flagged 
counties that have insignificant fractional logit regression models (in particular see the Iowa (19) 
climate divisions where Flag=1). Note that we also flag those climate divisions with less than 10 
years of loss cost data (See State Proxy flag in Table 4.7). In these cases, we aggregate to the 
state level and use the fractional regression estimates at the state level to get the predicted values 
for these “thin” data climate divisions.  In rare cases where there is no climate division in a state 
with at least 10 observations, we do not apply the models and instead recommend that some form 
of subjective rating be used to establish rates. 
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An example of predicted loss costs for corn in Iowa (climate division 5) is presented in Table 
4.8. The “backcasted” loss costs from 1975 to 1979 are presented in order to show that the 
predicted loss costs can be calculated for years in which there are no actual loss data. This 
facilitates the classification of years based on the weather index (predicted loss cost) for the 116 
years for which the weather variables are available.   
 
Loss Year Classification and Weight Assignment 
 
Using the predicted loss cost values from the regression model, each year needs to be classified 
and assigned a weight that represents its likelihood as indicated by the longer weather series. As 
mentioned in section 3 above, one approach is to develop variable width bins (or groupings) with 
equal probabilities or weights. This approach is done by first determining the number of bins or 
percentiles and assigning the predicted loss costs to the appropriate bin or percentile cut-off. For 
example, assuming that we are interested in 10 bins we would like to find the predicted loss costs 
in the long history of weather data that correspond to the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 
90th percentile, in addition to the minimum and maximum values. In this case, we have variable 
width bins, since the ranges of the loss cost values used to delineate the bins are not equal across 
bins, but the probability of falling into each bin is always equal to 10% (See Figure 3.2 in 
previous section). If the predicted values are normally distributed, the tails (at both ends of the 
distribution) tend to have wider bin ranges since only a few observations fall in these areas, but 
the middle bins tend to have smaller widths because a lot of observations fall in these middle 
bins.  
 
Once the variable width bins are delineated, the predicted loss cost value for each year (from 
1895 onward) can be classified and assigned to the bin in which it falls. Using the above 
example, if the bin width for the 10th bin (from the 90th percentile to the maximum) is, say, from 
0.09 to 0.15 and the year 1988 predicted loss cost is 0.13 (i.e. one of the high loss years), then 
year 1988 is in the 10th bin. Each year is similarly classified using predictions from the fractional 
logit regression models. Since the probability of each bin is equal in this approach, there is no 
need to assign a specific differential weight to each bin. 
 
One issue that needs to be addressed is the number of bins to assume and the possible existence 
of empty bins during the years with loss cost data (from 1980 till 2009). As discussed in further 
detail below, once the years from 1895 onward are classified based on the weather index, the 
RMA’s actual adjusted loss cost data from 1980 till 2009 are utilized to calculate the average 
loss cost for a county. Hence, it is possible that years from 1980 to 2009 do not contain a 
dispersion of data such that each bin has one or more loss costs (i.e., not all bins are represented 
in the 1980-2009 period). For example, it may be that no year in the 1980 to 2009 period is 
classified as falling into bin 9.  This will have adverse implications for the calculation of the 
average loss costs if not all bins are represented in the 1980-2009 period (i.e., not all bin 
probabilities are represented).  In particular, a range of observed weather history is not being 
captured in the weighting of loss costs.  Therefore, to address the issue of empty bins and, at the 
same time, determine the appropriate number of bins, the approach we pursue is to first look at 
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15 bins and then move down one bin at a time (i.e., from 15 till 2 bins) to establish the largest 
number of bins for which there are no cases of empty bins in the years with loss data (1980-
2009). This is done for each climate division, and so the number of bins may vary for each 
climate division within a state. 
 
The variable bin width with equal probability approach is a fairly straightforward method 
compared to the approach of using kernel densities or parametric distributions. This “simplicity” 
facilitates the practical implementation of this procedure for multiple crops and for nationwide 
coverage. Moreover, we believe this variable bin width approach may be better than a standard 
histogram approach (that has equal bin widths and variable probabilities for each bin) because 
this mitigates the “empty bin” issue described above. That is, the likelihood of having empty bins 
for the years with loss data (1980-2009) is smaller under this approach as compared to a 
histogram approach with equal bin widths and variable probabilities. The number of bins in the 
variable bin width with an equal probability approach tends to be greater than if we used the 
histogram approach.  
 
An example of the bin classification results for soybeans in Mississippi (climate division 1) is 
presented in Table 4.7. In this example, the number of bins is 10 and this number assures that 
there are no “empty bins” from 1980-2009. All bin classifications are represented in the 1980-
2009 data (i.e., see Bin Classification column in Table 4.7). We also show in this table that the 
model insignificance flag and state proxy flag are both equal to zero, which means that the model 
fit results for this climate division is significant and the number of observations used in the 
estimation is at least 10.    
 
Loss Cost Averaging Procedure 
 
After each year is classified into a particular bin at the climate division level (for all 116 years), 
the classified data for each year and the insignificance flags (based on regression model) are then 
merged with the county level loss data. Since the regressions and year classifications based on 
the weather indexes are done at the climate division level, all counties within a particular climate 
division will have the same year classification and insignificance flags.   
 
The average loss costs are next calculated using the 1980-2009 data where there are available 
actual adjusted loss cost values in the RMA Statplan data. We first calculate the aggregate loss 
cost for each county, which is the current procedure used for computing the county base rate. 
Then we do a “weather weighting” average of loss costs for each county. This weather weighting 
is done by first taking the average loss cost within each of the defined bins and then taking the 
“average of the average loss costs” across the bins. For example, if there are 9 bins within a 
county, we first calculate a simple average of the loss costs within each of these 9 bins (i.e., one 
average loss cost for each bin that results in 9 “average” observations). Then, we take the 
average of the 9 average loss costs for the 9 bins (i.e., “average of the average loss costs”). Since 
the bins are constructed to have equal probabilities, there is no need for taking a “weighted 
average of the average loss costs”. However, given the approach described above, the recency 
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weighting (discussed in more detail below) can be applied when taking the average loss cost 
within a bin. That is, more recent years of data can be given more weight relative to older years 
within each bin. 
 
To allow for consistency with the current catastrophic loading procedure, we also calculate the 
unweighted and weather weighted average loss costs where the adjusted loss cost data are 
censored at the 80th percentile. A similar calculation is done where the censoring is done at the 
90th percentile (since there was a recent recommendation to increase the censoring for 
catastrophic loading to this level). 
 
Example and National Summary Results 
 
An example case where county level loss costs are merged with the bin classification data can be 
seen in Table 4.3 for corn in Dewitt County, IL. The unweighted and weather weighted average 
loss costs at the county level can be calculated using the data presented in Table 4.3. The bin 
classification column allows us to conduct the weather weighting procedure described above. If 
the insignificance flag for model fit is equal to one in any county, we do not recommend using 
weather weighting for the county (i.e., we do not report a weather weighted average in this case).  
 
Examples of unweighted and weather weighted average loss costs for several counties in Iowa 
are presented in Table 4.8.  Note that we calculate six loss costs averages (i.e. six weighting 
types) per county where: Weighting type = 1 if the average loss cost is calculated with no 
weather weighting; Weighting type =2 if the average loss cost is calculated with weather 
weighting; Weighting type = 3 if the average loss cost is calculated with censoring at the 80th 
percentile and no weather weighting; Weighting type = 4 if the average loss cost is calculated 
with censoring at the 80th percentile and with weather weighting; Weighting type = 5 if the 
average loss cost is calculated with censoring at the 90th percentile and no weather weighting; 
Weighting type = 6 if the average loss cost is calculated with censoring at the 90th percentile and 
with weather weighting. In the example in Table 4.8, it can be seen that the weather weighted 
average loss cost tends to be smaller than the unweighted average loss cost. However, this is not 
a pattern observed in every county-crop combination. There are cases where the weather 
weighted average loss costs are higher than the unweighted average loss costs. 
 
Table 4.9 presents the national average of the calculated unweighted and weighted loss costs for 
all crops we examined. This is the liability weighted average across counties (i.e., the liability 
weighted average (not simple average) of the average county level loss costs based on the 2009 
liability of each county). For apples, barley, cotton, potatoes, rice, and spring/winter wheat, the 
weather weighted average loss costs (at the national level) tend to be smaller than the 
unweighted loss costs. However, for corn, cotton, sorghum, and soybeans the weather weighted 
average loss costs (at the national level) tend to be larger. A map showing the pattern of the 
difference between unweighted and weighted average loss costs for corn is presented in Figure 
4.5. Around 51% of the counties have weather weighted average loss costs lower than the 
unweighted loss costs. 
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Table 4.1. Example of a hypothetical out-of-sample competition for choosing the best weather 
variables to create a weather index for a state. 
Combination 
No. 

Weather Variable Combinations Mean squared 
error 

1 ja_pdsi_n ja_pdsi_p 0.91210 

2 ja_pdsi_n ja_pdsi_p total_cdd jaj_cdd 0.96825 

3 mj_pdsi_n mj_pdsi_p 1.14213 

4 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 0.86039 

5 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p total_cdd jaj_cdd 0.98366 

6 mj_pdsi_n mj_pdsi_p total_cdd jaj_cdd 1.01876 

7 total_cdd jaj_cdd 0.98623 

Note: In the example above, Combination No. 4 is the best combination of weather variables based on 
Mean Squared Error criteria. These will be the variables used in the fractional logit regression to create 
the weather index for a particular state and crop. 
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Table 4.2. Predicted loss cost values, net acres and actual adjusted loss costs for corn in Iowa 
(State=19), climate division 5 (1975-2009). 

State 
Climate 
Division Year Net Acres Actual Adjusted loss costs Predicted loss costs 

19 5 1975   0.013088 

19 5 1976   0.0066332 

19 5 1977   0.01381172 

19 5 1978   0.0155085 

19 5 1979   0.00979918 

19 5 1980 386569.9 0.00850007 0.01860698 

19 5 1981 682904.5 0.00165572 0.0066969 

19 5 1982 399409.3 0.00290903 0.00939713 

19 5 1983 190959.8 0.03955581 0.02977137 

19 5 1984 446252.2 0.00654651 0.00991062 

19 5 1985 502489.2 0.00422874 0.00852455 

19 5 1986 542506.4 0.00542233 0.0075103 

19 5 1987 510334.5 0.00063739 0.01377865 

19 5 1988 599368.5 0.1357396 0.05201126 

19 5 1989 1392289.1 0.01159806 0.00765586 

19 5 1990 1166061.1 0.00804332 0.0129854 

19 5 1991 852311.4 0.00912895 0.01383259 

19 5 1992 897023.9 0.00145545 0.00394455 

19 5 1993 818194.7 0.1242836 0.00734594 

19 5 1994 981496.4 0.00096833 0.00734679 

19 5 1995 1035910.2 0.0045309 0.0170454 

19 5 1996 599679.6 0.00172944 0.005732 

19 5 1997 1033995.6 0.0015911 0.00671987 

19 5 1998 1074943.8 0.0094961 0.04710033 

19 5 1999 1150101.9 0.00057391 0.00677308 

19 5 2000 1243181.5 0.00022049 0.01780193 

19 5 2001 1237287.7 0.00437922 0.0106978 

19 5 2002 1311398.1 0.00041306 0.00989905 

19 5 2003 1334522.2 0.00168785 0.01217966 

19 5 2004 1374407.5 0.00262745 0.00778709 

19 5 2005 1332961.6 0.00067134 0.01534896 

19 5 2006 1284211.9 0.00101743 0.01114424 

19 5 2007 1469130.3 0.00063091 0.02610541 

19 5 2008 1440665.6 0.0116602 0.00627608 

19 5 2009 1567807.9 0.01434467 0.00631721 
Note: The predicted loss costs are available from 1895-2010.  In the interest of space, we only present data from 
1975-2009.  However, this demonstrates that “backcasted” predicted values can be calculated in years without the 
actual loss cost data.
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Table 4.3. Example county-level data used for calculating weather weighted average loss costs 
for De Witt county (County=39), IL (State=17): corn. 

State County 
Climate 

Division Year 
Actual Adjusted 

loss costs 
Bin 

Classification No. of Bins 
Flag =1 if 

insignificant 

17 39 4 1980 0.1237103 10 11 0 

17 39 4 1981 0.0083081 3 11 0 

17 39 4 1982 0.0040853 2 11 0 

17 39 4 1983 0.1285333 11 11 0 

17 39 4 1984 0.0081736 5 11 0 

17 39 4 1985 0 2 11 0 

17 39 4 1986 0 5 11 0 

17 39 4 1987 0 9 11 0 

17 39 4 1988 0.1321881 10 11 0 

17 39 4 1989 0.0007658 2 11 0 

17 39 4 1990 0.0031037 3 11 0 

17 39 4 1991 0.0008012 10 11 0 

17 39 4 1992 0.0006445 1 11 0 

17 39 4 1993 0.0004054 3 11 0 

17 39 4 1994 0 3 11 0 

17 39 4 1995 0.0185295 8 11 0 

17 39 4 1996 0 2 11 0 

17 39 4 1997 4.105E-05 2 11 0 

17 39 4 1998 0.0009253 8 11 0 

17 39 4 1999 0.0004244 6 11 0 

17 39 4 2000 0 4 11 0 

17 39 4 2001 0.0007537 4 11 0 

17 39 4 2002 0.0125182 9 11 0 

17 39 4 2003 9.802E-05 3 11 0 

17 39 4 2004 0.0011999 1 11 0 

17 39 4 2005 0.0031927 10 11 0 

17 39 4 2006 0.0006764 7 11 0 

17 39 4 2007 0.0020617 9 11 0 

17 39 4 2008 0.0008186 3 11 0 

17 39 4 2009 0.0026792 1 11 0 
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Table 4.4. Example of fractional logit regression results using selected “best” weather variables 
for the state: corn in climate division 5, Illinois (17) and soybeans in climate division 1, Indiana 
(18). 
Corn: Climate Division 5, Illinois 
                                                                                 

             Analysis of Maximum Likelihood Parameter Estimates                   
                                                                                  
                         Standard       Wald 95%             Wald                 
Parameter  DF  Estimate     Error   Confidence Limits  Chi-Square  Pr > ChiSq     
                                                                                  
Intercept   1   -17.6357   15.7925   -48.5884   13.3171        1.25      0.2641     
total_cdd   1     0.0101      0.0181     -0.0254    0.0456        0.31      0.5774     
jaj_cdd     1      0.0055      0.0333     -0.0598    0.0707        0.03      0.8692 
 
Criteria For Assessing Goodness Of Fit                                   
Criterion                     DF           Value        Value/DF                  
  
Deviance                      27          0.5804          0.0215                  
Scaled Deviance               27          0.5804          0.0215                  
Pearson Chi-Square            27          0.5873          0.0218                  
Scaled Pearson X2             27          0.5873          0.0218                  
Log Likelihood                           -2.7963                                  
 
Number of Observations Used          30 
Soybeans: Climate Division 1, Indiana 
                                                                                                                   
                         Standard       Wald 95%             Wald                 
Parameter  DF  Estimate     Error   Confidence Limits  Chi-Square  Pr > ChiSq     
                                                                                  
Intercept    1   -4.9453    3.2812   -11.3764     1.4857        2.27      0.1318     
ja_pdsi_n   1   -0.8383    1.4242    -3.6296      1.9531        0.35      0.5561     
ja_pdsi_p   1    0.2246    1.3966    -2.5127      2.9619        0.03      0.8722 
 
Criteria For Assessing Goodness Of Fit                                             
Criterion                     DF           Value        Value/DF                  
Deviance                      27          0.4373          0.0162                  
Scaled Deviance               27          0.4373          0.0162                  
Pearson Chi-Square            27          0.5476          0.0203                  
Scaled Pearson X2             27          0.5476          0.0203                  
Log Likelihood                           -2.5996                                  
 
Number of Observations Used          30 
Note: All fractional logit results for all “state-climate division-crop” combinations are available 
from the authors upon request. 
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Table 4.5. Weather variables chosen for each state to calculate the weather index based on the 
out-of-sample competition: corn example.  

state Weather Variable Combinations 
Mean squared 

error 

1 ja_pdsi_n ja_pdsi_p 5.1859665 

4 ja_pdsi_n ja_pdsi_p 0.1061328 

5 total_cdd jaj_cdd 9.7063898 

6 total_cdd jaj_cdd 1.8864413 

8 total_cdd jaj_cdd 0.5599298 

9 ja_pdsi_n ja_pdsi_p 1.8823582 

10 ja_pdsi_n ja_pdsi_p total_cdd jaj_cdd 0.3794463 

12 total_cdd jaj_cdd 0.9065109 

13 total_cdd jaj_cdd 7.304132 

16 total_cdd jaj_cdd 1.4533495 

17 total_cdd jaj_cdd 0.9245507 

18 total_cdd jaj_cdd 0.9172543 

19 total_cdd jaj_cdd 1.3256818 

20 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 3.0718882 

21 ja_pdsi_n ja_pdsi_p 1.1527433 

22 mj_pdsi_n mj_pdsi_p 7.3063892 

23 ja_pdsi_n ja_pdsi_p 2.1138152 

24 ja_pdsi_n ja_pdsi_p 3.0374947 

25 total_cdd jaj_cdd 0.6621126 

26 total_cdd jaj_cdd 6.7038752 

27 total_cdd jaj_cdd 3.8878839 

28 total_cdd jaj_cdd 10.240115 

29 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 2.141111 

30 mj_pdsi_n mj_pdsi_p total_cdd jaj_cdd 2.4403504 

31 ja_pdsi_n ja_pdsi_p 0.4422113 

33 ja_pdsi_n ja_pdsi_p 0.1377493 

34 ja_pdsi_n ja_pdsi_p 1.5424982 

35 total_cdd jaj_cdd 4.1921117 

36 total_cdd jaj_cdd 4.940591 

37 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p total_cdd jaj_cdd 3.6997904 

38 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p total_cdd jaj_cdd 9.0963143 

39 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 0.9783726 

40 total_cdd jaj_cdd 8.4841414 

41 ja_pdsi_n ja_pdsi_p 0.461521 
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42 ja_pdsi_n ja_pdsi_p 4.7989437 

44 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 0.3507331 

45 total_cdd jaj_cdd 5.3265052 

46 mj_pdsi_n mj_pdsi_p 6.1671228 

47 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 0.9630748 

48 mj_pdsi_n mj_pdsi_p 6.7365194 

49 ja_pdsi_n ja_pdsi_p 0.4809822 

50 ja_pdsi_n ja_pdsi_p 0.9504381 

51 mj_pdsi_n mj_pdsi_p ja_pdsi_n ja_pdsi_p 1.8095605 

53 ja_pdsi_n ja_pdsi_p 0.1583591 

54 total_cdd jaj_cdd 6.3146905 

55 total_cdd jaj_cdd 3.8595231 

56 mj_pdsi_n mj_pdsi_p 2.7716175 
Note: Combinations of weather variables used for other crops can be seen in Appendix A. 
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Table 4.6.  Climate divisions flagged as statistically insignificant in Indiana (State=18), Iowa 
(State=19), and Kansas (State=20) for corn. 

State Climate division Correlation P value 
Flag =1 if 

insignificant 

18 1 0.697348 1.849E-05 0 

18 2 0.8206735 2.804E-08 0 

18 3 0.703589 1.442E-05 0 

18 4 0.6154699 0.0002946 0 

18 5 0.6592917 7.421E-05 0 

18 6 0.7147064 9.123E-06 0 

18 7 0.4857597 0.0065023 0 

18 8 0.5676294 0.0010696 0 

18 9 0.4039534 0.0268396 0 

19 1 0.1176057 0.5359587 1 

19 2 0.087774 0.6446394 1 

19 3 0.4513596 0.0122938 0 

19 4 0.2842945 0.1278601 1 

19 5 0.4576954 0.0109846 0 

19 6 0.8277632 1.67E-08 0 

19 7 0.2724787 0.1451881 1 

19 8 0.5400418 0.0020673 0 

19 9 0.7837669 3.015E-07 0 

20 1 0.8007809 1.072E-07 0 

20 2 0.8111501 5.434E-08 0 

20 3 0.7218704 6.715E-06 0 

20 4 0.732416 4.203E-06 0 

20 5 0.8057017 1.341E-07 0 

20 6 0.8578067 1.388E-09 0 

20 7 0.6950983 2.019E-05 0 

20 8 0.4734226 0.0082312 0 

20 9 0.9378357 2.15E-14 0 

Note: If the Flag (last column) is equal to one then the fractional logit regression model is 
deemed to be insignificant (i.e. the correlation between actual and predicted loss costs has a p-
value > 0.1) or the correlation is negative. 
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Table 4.7. Bin classification for soybeans in Mississippi (State=28) climate division 1 (1980-
2009). 

State 
Climate 

Division Year 

State proxy 
flag=1 if used 
state predicted 

values Bin Classification 

No of Bins for 
the Climate 

Division 
Flag =1 if 

insignificant 

28 1 1980 0 4 10 0 

28 1 1981 0 8 10 0 

28 1 1982 0 2 10 0 

28 1 1983 0 5 10 0 

28 1 1984 0 4 10 0 

28 1 1985 0 8 10 0 

28 1 1986 0 9 10 0 

28 1 1987 0 1 10 0 

28 1 1988 0 10 10 0 

28 1 1989 0 8 10 0 

28 1 1990 0 4 10 0 

28 1 1991 0 6 10 0 

28 1 1992 0 5 10 0 

28 1 1993 0 2 10 0 

28 1 1994 0 4 10 0 

28 1 1995 0 1 10 0 

28 1 1996 0 1 10 0 

28 1 1997 0 5 10 0 

28 1 1998 0 10 10 0 

28 1 1999 0 5 10 0 

28 1 2000 0 8 10 0 

28 1 2001 0 5 10 0 

28 1 2002 0 4 10 0 

28 1 2003 0 5 10 0 

28 1 2004 0 3 10 0 

28 1 2005 0 7 10 0 

28 1 2006 0 9 10 0 

28 1 2007 0 8 10 0 

28 1 2008 0 6 10 0 

28 1 2009 0 4 10 0 

28 1 2010 0 10 10 0 
Note: The state proxy flag is equal to 1 if there are not enough observations (n>10) in the climate divisions to run a credible fractional regression 
model and calculate a predicted loss cost (weather index). 
 



Methodology Analysis for Weighting Historical Experience – 
Technical Report 

 

39 

 

Table 4.8. Example of unweighted and weather weighted loss costs at the county-level for Boone 
County (county=15), Dallas County (county=49), and Grundy County (county=75), IA 
(State=19). 

State 
Climate 

Division County 
County Average loss 

costs 
Flag =1 if 

insignificant 
Weighting 

Type 

19 5 15 0.0096378 0 1 

19 5 15 0.0076921 0 2 

19 5 15 0.0028386 0 3 

19 5 15 0.0027737 0 4 

19 5 15 0.0035587 0 5 

19 5 15 0.0033862 0 6 

19 5 49 0.0100697 0 1 

19 5 49 0.0097928 0 2 

19 5 49 0.0058953 0 3 

19 5 49 0.0058029 0 4 

19 5 49 0.007514 0 5 

19 5 49 0.0075715 0 6 

19 5 75 0.0091694 0 1 

19 5 75 0.0051299 0 2 

19 5 75 0.001323 0 3 

19 5 75 0.0010593 0 4 

19 5 75 0.0044935 0 5 

19 5 75 0.0032308 0 6 
Note: Weighting type = 1 if the average loss cost is calculated with no weather weighting and no 
censoring; Weighting type =2 if the average loss cost is calculated with weather weighting but no 
censoring; Weighting type = 3 if the average loss cost is calculated with censoring at the 80th 
percentile and no weather weighting; Weighting type = 4 if the average loss cost is calculated 
with censoring at the 80th percentile and with weather weighting; Weighting type = 5 if the 
average loss cost is calculated with censoring at the 90th percentile and no weather weighting; 
Weighting type = 6 if the average loss cost is calculated with censoring at the 90th percentile and 
with weather weighting. 
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Table 4.9. Liability weighted national average (across counties) of unweighted and weather 
weighted average loss costs for apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, 
spring wheat and winter wheat. 

Crop 
No. of 

Counties 

Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 140 0.1839529 0.1756118 0.1509251 0.1458255 0.1722479 0.1649113 

barley 646 0.1033683 0.0952631 0.071994 0.0677116 0.088203 0.0820236 

corn 1930 0.0505333 0.0525652 0.028726 0.0293841 0.0394102 0.0409063 

cotton 437 0.143511 0.1459077 0.1103868 0.1110684 0.1292813 0.1305584 

potatoes 128 0.083174 0.0807186 0.0659818 0.0646853 0.0752233 0.0730846 

rice 84 0.0263574 0.0251909 0.015527 0.0148564 0.0203618 0.0193536 

sorghum 750 0.1208383 0.1317581 0.0887164 0.09226 0.1079448 0.1140653 

soybeans 1523 0.0542112 0.0538458 0.0384229 0.0379807 0.0467105 0.0460899 

spring wheat 244 0.1218715 0.1171909 0.0887732 0.0872793 0.1094074 0.1063092 

winter wheat 951 0.0982152 0.0852073 0.0719574 0.065563 0.0851164 0.0759965 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one. All weighted 
and unweighted loss costs for each county can be seen in the Appendix B.  
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Figure 4.1a. Map of U.S. climate divisions. 
(Established by the National Climate Data Center of NOAA) 
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Figure 4.1b. County assignment to climate divisions delineated within states. 
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Figure 4.2. No. of years with zero loss costs in the corn climate division level data set (508 
compliant data is in Appendix D-3). 
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Figure 4.3. No. of years with zero loss costs in the barley climate division level data set (508 
compliant data is in Appendix D-4). 
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Figure 4.4. No. of years with loss cost equal to one in the apple climate division level data 
set (508 compliant data is in Appendix D-5). 
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Figure 4.5. Map of the difference between the unweighted average loss cost and the weather 
weighted loss costs for corn (508 compliant data is in Appendix D-6). 
Note: negative difference (weather weighted < unweighted) is in blue (0) and positive difference 
(weather weighted > unweighted) is in red (1). 
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b. Analysis of Alternative Loss Cost Adjustments  
 
 
Based on the discussion of non-stationarity in the loss cost in section three, we conducted several 
empirical analyses to quantify these effects where possible.  Because we are attempting to 
measure effects such as technological change or program changes that are applied broadly, our 
analysis is conducted by aggregating crop/climate division data to the crop/state level.  Also note 
that because of the issues discussed in our analysis of weather effects we include the weather 
variables aggregated to the state level.  This allows us to evaluate program non-stationarity while 
controlling for unique weather events that may drive the observed loss cost in the 1980-2010 
data.   Because of the increased aggregation, censoring of the dependant variable was examined 
and found to no longer be an issue, so for ease of interpretation ordinary least squares regression 
was used.   Three alternative models were estimated: 
 
model 1 adj_yr_lcr = f(pre-1995, weather variables) 
   
model 2 adj_yr_lcr = f(pre-1995, post-1994 trend, weather variables)   
 
 model 3 adj_yr_lcr = f(net acres insured, weather variables)  

 
The Pre-1995 variable takes a value of 1 if crop year is less than 1995.  This variable is posited 
to capture differences in expected loss costs before and after the fundamental program changes 
that took place in 1995.  The trend variable takes a value of zero if crop year is less than 1995 
and is the difference between crop year and 1994 (crop year – 1994) from 1995 on. This variable 
is estimated with the pre-1995 variable to see if there are discernable trends in the loss cost 
experience since the 1995 program changes.  Finally, net acres insured is the sum of net acres 
insured for the crop/state.  Net acres reflect participation in insurance programs and crop acres.  
Further, all else equal, more acres provide greater credibility underlying the program. No 
state/crop result is reported if there were not at least 15 years of loss cost data for the state.  We 
also required at least 20,000 acres insured in the year except for apples where the limit was 
lowered to 5000 acres.   
 
In the following tables we report results by crop.  The parameter estimates for each state are 
reported.  When the parameter is statistically significant at the ten percent level it is noted.  We 
also shade in green any value that indicates more recent loss costs are lower than older 
experience.  This is indicated by 1) a positive pre-1995 loss cost effect in model 1; 2) a positive 
pre-1995 loss cost effect in model 2 and/or the post-1994 loss cost trend; 3) a negative effect for 
net acres in model 3 when net acres insured are trending up through time.  Conversely, if these 
parameters take the opposite signs and are statistically significant we highlight in red indicating 
higher loss cost patterns in recent years. In some instances the statistical significance for the pre-
1995 effect is different between model 1 and model 2. In general we regard the effect to be 
significant if either model suggests so. 
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Table 4.10 reports the results for apples: a crop with a single state containing sufficient data to 
analyze and even then data are missing for the pre-1995 period.  The lone significant loss cost 
adjustment is the net acre variable, which is negative and significant suggesting years with more 
insured acres have a lower loss cost.  Because there has been an upward trend in net insured 
apple acres, this suggests more recent experience has been better in Washington apples. 
 
Table 4.11 shows the loss cost adjustment results for barley.  The results for the pre-1995 
variables are decidedly mixed.   In two states (CO, ID) more recent experience appears more 
actuarially sound.  However, in three other states (MN, OR, SD) this result is contradicted.  In no 
barley states is there a statistically significant trend effect, but in three states the net acres 
variable is significant (CO, ID, OR).  However, the Colorado and Idaho results appear to conflict 
with the pre-1995 results. 
 
The analysis for corn is reported in table 4.12.  Note first that when results are statistically 
significant, they suggest more recent experience is better.  Seven states are found to have a 
significantly higher loss cost prior to 1995.  This includes major producing states of Illinois, 
Indiana, and Missouri.  Downward trends in post-1995 lost costs are observed in Iowa, North 
Dakota, and Tennessee.  The net acres variable is negative in every state where it is significant.  
In total, 13 states fall in this group which includes nearly every Corn Belt state.   
 
Table 4.13 reports the results for grain sorghum.  The pre-1995 variable is positive and 
significant in three states and negative and significant in Oklahoma.  The post-1995 loss cost 
trend is not significant in any state.   The net acres model contradicts the pre-1995 dummy model 
in Illinois.  Further, in the major producing states of Kansas, Oklahoma, and Texas the net acre 
model suggests loss costs are increasing as net acres increase. 
 
The results for potatoes in two states are shown in Table 4.14.  Only one effect is significant.  
The pre-1995 effect in Idaho suggests higher loss costs prior to 1995. 
 
Rice results are shown in Table 4.15.  Only four states had sufficient data for analysis, but 
statistical significance is found in all four.  The pre-1995 effect is significant in Arkansas, 
Louisiana, and Mississippi, but not Texas.  The post-1994 trend is not significant in any state.  
However, the net acres model suggests that loss costs improve with increased insured acres in 
Arkansas, Louisiana, and Texas.  

Soybean results are reported in Table 4.16.  The pre-1995 effect is positive and significant in 
several states suggesting more recent experience is better.  Most of the states with significant 
effects are Southern states such as Texas, Alabama, Arkansas, Mississippi, and Louisiana.  
However, Illinois and Nebraska also have the same sign.  Virginia is the lone exception with a 
negative pre-1995 effect.   The post-1995 trend model is only significant in two states – North 
Carolina and Virginia.  In both cases it suggests recent loss costs are lower.  When significant, 
the net acres insured model always suggests that loss costs improve with increased insured acres 
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in the state. It is significant in seven regionally diverse states, but notable Illinois and Missouri 
from the Corn Belt. 

Table 4.17 reports the results for spring wheat.  Idaho and Montana are found to have a positive 
pre-1995 effect while South Dakota has an opposite sign.  Only Idaho has a positive and 
significant post-1994 effect.  The net acres insured effect is only significant in Montana. 
 
The final table in this section is table 4.18 for winter wheat.  While data are available from 
several states, the results for winter wheat are mixed.  The pre-1995 dummy variable is positive 
and significant in several southeastern states, but takes the opposite sign in Texas, Oklahoma, 
Oregon, and Colorado.   The post-1994 effect is only significant in three states.  In California and 
Kentucky, it suggests upward trends in loss costs while in Colorado the trend is negative.  The 
net acres variable is positive and significant in five states and negative and significant in South 
Carolina. 
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State Models 
 
Table 4.10. Estimation of alternative state-level loss cost adjustments -apples. 
Apples State Model 1 

Pre-1995 
Loss Cost 
Effect 

Significant 
(10% level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% level)  

WA 53 N.A.      
WA 53 N.A. . -0.002515 .   
WA 53  .  . -0.01898 * 
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Table 4.11. Estimation of alternative state-level loss cost adjustments -barley. 
Barley State Model 1 

Pre-1995 
Loss Cost 
Effect 

Significant 
(10% level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% level)  

CA 6 0.0003  .     
CA 6 0.08014  0.007645     
CA 6 .  .  0.02404  
CO 8 0.13256 * .     
CO 8 0.0996  -0.002845     
CO 8 .  .  -0.00582 * 
ID 16 0.04299 * .      
ID 16 0.02962  -0.001751     
ID 16 .  .  -0.00086 * 
MN 27 -0.08543 * .     
MN 27 -0.0708  0.002076     
MN 27 .  .  -0.00325  
MT 30 0.06871  .     
MT 30 -0.00777  -0.009119     
MT 30 .  .  -0.00052  
ND 38 -0.02891  .     
ND 38 -0.05598  -0.003077     
ND 38 .  .  0.00006  
OR 41 -0.12441 * .      
OR 41 -0.02063  0.01273     
OR 41 .  .  0.02837 *Acres 

stable 
SD 46 -0.07658  .     
SD 46 -0.19942 * -0.013524      
SD 46 .  .  0.00462  
WA 53 0.00874  .     
WA 53 -0.01023  -0.002346     
WA 53 .  .  0.00064  
WY 56 0.00477  .     
WY 56 -0.02075  -0.002717     
WY 56 .  .  -0.00017  
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Table 4.12. Estimation of alternative state-level loss cost adjustments -corn. 
Corn State Model 1 

Pre-1995 
Loss Cost 
Effect 

Significant 
(10% level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% level)  

AL 1 0.05397  .    
AL 1 0.01514  -0.005237    
AL 1 .  .  -0.01103 * 
CO 8 -0.01082  .    
CO 8 -0.02857  -0.00201    
CO 8 .  .  0.00012  
DE 10 -0.03129  .     
DE 10 -0.03946  -0.000921     
DE 10 .  .  0.00321  
GA 13 -0.00341  .     
GA 13 -0.07951  -0.010552     
GA 13 .  .  -0.00606  
IL 17 0.03233 * .     
IL 17 0.01847  -0.001487     
IL 17 .  .  -0.00008 * 
IN 18 0.03072  .    * 
IN 18 0.01706  -0.001713     
IN 18 .  .  -0.00021 * 
IA 19 0.01765  .     
IA 19 -0.01356  -0.003442 *     
IA 19 .  .  -0.00005 * 
KS 20 0.00013  .     
KS 20 0.00014  0.000001     
KS 20 .  .  -0.00002  
KY 21 0.09438 * .     
KY 21 0.09772 * 0.000401      
KY 21 .  .  -0.00199 * 
LA 22 0.06448  .     
LA 22 0.03784  -0.003211     
LA 22 .  .  -0.00091  
MD 24 -0.0179  .     
MD 24 -0.02377  -0.00075     
MD 24 .  .  0.00084  
MI 26 0.04805 * .     
MI 26 0.01403  -0.004335     
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MI 26 .  .  -0.00121 * 
MN 27 -0.00199  .     
MN 27 0.03671  0.005493     
MN 27 .  .  0.00002  
MS 28 0.12261  .    * 
MS 28 0.07581  -0.005209     
MS 28 .  .  -0.00392  
MO 29 0.05629 * .     
MO 29 -0.01254  -0.008116     
MO 29 .  .  -0.00071 * 
NE 31 0.00704  .     
NE 31 -0.00793  -0.001761     
NE 31 .  .  -0.00003  
NC 37 -0.00556  .     
NC 37 -0.00788  -0.000317     
NC 37 .  .  -0.00024  
ND 38 0.02687  .      
ND 38 -0.10847  -0.013724 *     
ND 38 .  .  -0.00062 * 
OH 39 0.02491  .     
OH 39 0.00948  -0.001992     
OH 39 .  .  -0.00024 * 
OK 40 -0.03678  .     
OK 40 -0.04379  -0.000801     
OK 40 .  .  0.00519 * 
PA 42 -0.01854  .     
PA 42 -0.01005  0.001093     
PA 42 .  .  0.00068  
SC 45 0.00518  .     
SC 45 -0.03907  -0.006141     
SC 45 .  .  -0.00406  
SD 46 -0.00299  .     
SD 46 -0.0701  -0.007388     
SD 46 .  .  0.00002  
TN 47 0.03634 * .     
TN 47 0.00366  -0.003805 *     
TN 47 .  .  -0.00184 * 
TX 48 0.08919 * .     
TX 48 0.0564  -0.003803     
TX 48 .  .  -0.00076 * 
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VA 51 0.02188  .     
VA 51 0.00828  -0.001749     
VA 51 .  .  -0.0023 * 
WV 54 0  .     
WV 54 0  0.004302     
WV 54 .  .  0.08797  
WI 55 0.04375 * .     
WI 55 -0.00753  -0.006336     
WI 55 .  .  -0.00048 * 
WY 56 0.04215  .     
WY 56 0.05978  0.002224     
WY 56 .  .  -0.00007  
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Table 4.13. Estimation of alternative state-level loss cost adjustments –grain sorghum. 
Grain 
Sorghum 

State Model 1  
Pre-1995 
Loss Cost 
Effect 

Significant 
(10% level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% level)  

AR 5 0.07993 * .  .   
AR 5 0.06457  -0.001825  .  
AR 5 .  .  -0.00851  
CO 8 -0.03422  .  .  
CO 8 0.12454  0.017516 * .  
CO 8 .  .  0.00519  
IL 17 0.07109 * .  .   
IL 17 0.10496  0.0035  .  
IL 17 .  .  0.02795 * Acres 

stable 
KS 20 -0.03363  .  .  
KS 20 -0.02108  0.001516  .  
KS 20 .  .  0.00032 * 
LA 22 0.09289  .  .  
LA 22 0.11792  0.003167  .  
LA 22 .  .  0.00399  
MO 29 0.07442 * .  .   
MO 29 0.04461  -0.003915  .  
MO 29 .  .  0.00732 * Acres 

declining 
NE 31 -0.01168  .  .  
NE 31 -0.0239  -0.001438  .  
NE 31 .  .  -0.0006  
NM 35 -0.01621  .  .  
NM 35 -0.11169  -0.010528  .  
NM 35 .  .  0.00064  
OK 40 -0.11504 * .  .   
OK 40 -0.12353 * -0.00102  .  
OK 40 .  .  0.00912 * 
SD 46 -0.14014  .  .   
SD 46 -0.31675  -0.018606  .  
SD 46 .  .  0.01553  
TX 48 -0.01622  .  .  
TX 48 -0.08615  -0.008175  .  
TX 48 .  .  0.00041 * 
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Table 4.14. Estimation of alternative state-level loss cost adjustments -potato. 
Potato State Model 1 

Pre-1995 
Loss Cost 
Effect 

Significant 
(10% 
level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% level)  

        
ID 16 0.02631 * .     
ID 16 0.02479  -0.000183    
ID 16 .  .  -0.00149  
ND 38 0.00769  .    
ND 38 0.03158  0.002529    
ND 38 .  .  0.01461  
 

Table 4.15. Estimation of alternative state-level loss cost adjustments -rice. 
Rice state Model 

1 
Pre-
1995 
Loss 
Cost 
Effect 

Significan
t (10% 
level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significan
t (10% 
level)  

Model 3 
Net 
Acres 
(10,000 
ac) 

Significan
t (10% 
level)  

AR 5 0.05267 * .  .  
AR 5 0.05573 * 0.000506964  .   
AR 5 .  .  -0.00133 * 
LA 22 0.07592 * .  .   
LA 22 0.08937 * 0.001595231  .   
LA 22 .  .  -0.00417 * 
MS 28 0.01978 * .  .  
MS 28 0.02262 * 0.000333516  .   
MS 28 .  .  -0.00157  
TX 48 0.01066  .  .  
TX 48 0.01103  0.000041966  .  
TX 48 .  .  -0.00117 * 
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Table 4.16. Estimation of alternative state-level loss cost adjustments -soybeans. 
Soybeans state Model 1 

Pre-1995 
Loss  
Cost Effect 

Significant 
(10% 
level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% 
level)  

AL 1 0.12153 * .     
AL 1 0.08483  -0.00495    
AL 1 .  .  0.00121  
AR 5 0.11899 * .     
AR 5 0.06552  -0.00724     
AR 5 .  .  -0.00135 * 
DE 10 -0.06008  .    
DE 10 -0.04477  0.0016    
DE 10 .  .  0.00432  
GA 13 0.04816  .    
GA 13 -0.03076  -0.01094    
GA 13 .  .  -0.00097  
IL 17 0.03186 * .     
IL 17 0.04357 * 0.001257     
IL 17 .  .  -0.00011 * 
IN 18 0.0129  .    
IN 18 0.00284  -0.00126    
IN 18 .  .  -0.0001 * 
IA 19 0.00848  .    
IA 19 0.00149  -0.00077    
IA 19 .  .  -0.00001  
KS 20 0.04147  .    
KS 20 0.02152  -0.00241    
KS 20 .  .  -0.00032  
KY 21 0.05654 * .     
KY 21 0.05204  -0.00055    
KY 21 .  .  -0.00086  
LA 22 0.17882 * .     
LA 22 0.15714 * -0.0026     
LA 22 .  .  -0.00055  
MA 24 -0.00688  .    
MA 24 -0.02017  -0.0017    
MA 24 .  .  -0.00052  
MI 26 0.05011  .    
MI 26 0.03285  -0.00216     
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MI 26 .  .  -0.00111 * 
MN 27 -0.00566  .    
MN 27 0.01279  0.002618    
MN 27 .  .  0.00003  
MS 28 0.11254 * .     
MS 28 0.09199 * -0.00247     
MS 28 .  .  -0.00127 * 
MO 29 0.06373 * .     
MO 29 0.07277  0.001067    
MO 29 .  .  -0.00029 * 
NE 31 0.02344 * .     
NE 31 0.01064  -0.00151    
NE 31 .  .  -0.00007 * 
NC 37 0.01511  .    
NC 37 -0.05389  -0.00941 *    
NC 37 .  .  -0.00084 * 
ND 38 -0.01142  .    
ND 38 -0.02464  -0.0015    
ND 38 .  .  0.00002  
OH 39 0.01033  .    
OH 39 0.00355  -0.00088    
OH 39 .  .  -0.00007  
OK 40 0.0238  .    
OK 40 0.02165  -0.00027    
OK 40 .  .  0.0008  
SC 45 0.13705 * .     
SC 45 -0.04658  -0.01734    
SC 45 .  .  -0.00638 * 
SD 46 0.01005  .    
SD 46 -0.02739  -0.00412    
SD 46 .  .  -0.00004  
TN 47 0.03078  .    
TN 47 -0.00486  -0.00438    
TN 47 .  .  -0.00106  
TX 48 0.17472 * .     
TX 48 0.28287 * 0.012657     
TX 48 .  .  -0.00376  
VA 51 -0.01865  .    
VA 51 -0.09645 * -0.01001 *    
VA 51 .  .  -0.00113  
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WI 55 0.00697  .    
WI 55 0.02185  0.001985    
WI 55 .  .  0.00018  
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Table 4.17. Estimation of alternative state-level loss cost adjustments –spring wheat. 
 

Spring 
wheat 

State Model 1 
Pre-1995 
Loss Cost 
Effect 

Significant 
(10% 
level)  

Model 2 
Post 
1994 
Loss 
Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 
ac) 

Significant 
(10% 
level)  

CA 6 -0.52676  .  .  
CA 6 -0.57888  -0.01298  .  
CA 6 .  .  -0.01356  
ID 16 0.07706 * .  .   
ID 16 -0.02428  -0.02241 * .   
ID 16 .  .  -0.0032  
MT 30 0.07593 * .  .   
MT 30 0.04504  -0.00369  .  
MT 30 .  .  -0.00036 * 
ND 38 -0.00807  .  .  
ND 38 -0.04989  -0.0047  .  
ND 38 .  .  -9.8E-06  
SD 46 -0.06522 * .  .   
SD 46 -0.12937 * -0.00737  .   
SD 46 .  .  0.00026  
WA 53 0.01824  .  .  
WA 53 -0.00158  -0.00433  .  
WA 53 .  .  -0.00014  
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Table 4.18. Estimation of alternative state-level loss cost adjustments –winter wheat. 
Winter 
Wheat 

State Model 1 
Pre-1995 
Loss Cost 
Effect 

Significant 
(10% 
level)  

Model 2 
Post 1994 
Loss Cost 
Trend 

Significant 
(10% 
level)  

Model 3 
Net Acres 
(10,000 ac) 

Significant 
(10% 
level)  

AR 5 0.06946  .  .  
AR 5 0.07271  0.00043  .  
AR 5 .  .  -0.00349  
CA 6 -0.1172  .  .  
CA 6 0.18789  0.0839 * .   
CA 6 .  .  0.02449 * 
CO 8 -0.01127  .  .  
CO 8 -0.0767 * -0.00778 * .   
CO 8 .  .  0.00047 *Declining 

Net Acres 
GA 13 0.03441  .  .  
GA 13 0.07069 * 0.00489  .   
GA 13 .  .  0.00103  
ID 16 0.00886  .  .  
ID 16 0.01471  0.00078  .  
ID 16 .  .  -0.00008  
IL 17 0.07741  .  .  
IL 17 0.05071  -0.00331  .  
IL 17 .  .  -0.00357  
IN 18 0.05584  .  .  
IN 18 0.00431  -0.00962  .  
IN 18 .  .  -0.00499  
KS 20 -0.01623  .  .  
KS 20 -0.0109  0.00063  .  
KS 20 .  .  0.00004  
KY 21 0.03965  .  .  
KY 21 0.10339 * 0.00909 * .   
KY 21 .  .  0.00003  
LA 22 0.16253 * .  .   
LA 22 0.17153  0.00108  .  
LA 22 .  .  -0.01089  
MI 26 -0.0074  .  .  
MI 26 -0.03854  -0.00429  .  
MI 26 .  .  -0.00102  
MN 27 0.01866  .  .  



Methodology Analysis for Weighting of Historical Experience 

 

Page 62 

 

MN 27 0.00315  -0.00205  .  
MN 27 .  .  -0.00013  
MS 28 0.17655 * .  .   
MS 28 0.14653  -0.00428  .  
MS 28 .  .  -0.01082  
MO 29 0.07196  .  .  
MO 29 0.04356  -0.00352  .  
MO 29 .  .  -0.00523  
MT 30 -0.0611  .  .  
MT 30 -0.0762  -0.00407  .  
MT 30 .  .  0.00057  
NE 31 0.01788  .  .  
NE 31 0.02936  0.001353  .  
NE 31 .  .  -0.00002  
NM 35 -0.0217  .  .  
NM 35 -0.15042  -0.0147  .  
NM 35 .  .  -0.00505  
NC 37 -0.00501  .  .  
NC 37 -0.00536  -4.5E-05  .  
NC 37 .  .  0.00031  
OH 39 0.01238  .  .  
OH 39 -0.01313  -0.00354  .  
OH 39 .  .  -0.00111  
OK 40 -0.07085 * .  .   
OK 40 -0.05364  0.002009  .  
OK 40 .  .  0.00026 * 
OR 41 -0.06108 * .  .   
OR 41 -0.08991 * -0.00384  .   
OR 41 .  .  0.00209 * 
SC 45 0.05753  .  .  
SC 45 -0.03191  -0.01049  .  
SC 45 .  .  -0.01346 * 
SD 46 -0.01197  .  .  
SD 46 -0.03212  -0.00484  .  
SD 46 .  .  -0.00038  
TX 48 -0.11145 * .  .   
TX 48 -0.03244  0.009376  .  
TX 48 .  .  0.0004 * 
UT 49 0.03639  .  .  
UT 49 0.03853  0.000183  .  
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UT 49 .  .  0.00341  
WA 53 -0.00358  .  .  
WA 53 0.00343  0.000891  .  
WA 53 .  .  -0.00004  
WY 56 -0.02224  .   . 
WY 56 -0.03068  -0.00099   . 
WY 56 .  .  0.00415  
 
Regional and National Models 

We also replicated our non-stationarity analysis at regional and national levels.  The regions 
were defined to reflect similar production areas as shown in Table 4.19.  Weather effects were 
maintained.  By combining states, the non-stationarity effects are estimated with more data.  This 
approach provides some smoothing of any effects, but also increases the chance that a general 
adjustment may not be appropriate in some specific location.   
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Table 4.19. Region definitions.  
Region States 
Southeast Region  1, 12, 13, 37, 45 
Southern Plains 20, 31, 8, 40, 48 
West 16, 30, 41, 53, 56, 4, 6, 32, 35, 49 
East 9,  10, 23, 24 , 25, 33, 34, 36, 42, 44, 50, 51, 54 
Midwest 17, 18, 19, 26, 27 29, 38, 39, 46, 55, 21  
Delta 5, 28, 47, 22 
Southwest 4, 6, 32, 35, 49 
Pacific Northwest 
 

2, 16, 41, 53 
Northern Plains 30, 38, 46 

Great Plains 8, 20, 31, 46, 56 
 

Table 4.20 reports the estimates for spring and winter wheat regions.  No effects are significant 
for spring wheat.  However, the results are mixed for winter wheat.  In the Delta, Southeast and 
Midwest there is evidence of significant differences in loss costs over time.  Conversely, in the 
various groupings of the Plains states and the Pacific Northwest there is evidence in at least one 
of the three model specifications that loss experience is worse in recent years.   
 
Corn and soybean results are reported in table 4.21.   In this table any effects that are significant 
suggest that loss experience is better in more recent years.  For corn only the east and west 
regions show no significance.  The clearest result is for the Midwest where all three models 
suggest improving loss costs over time.  For soybeans the pre-1995 effect is significant in the 
Midwest but has the largest magnitude in the Delta and Southeast.  
 
Table 4.22 reports the regional results for sorghum and cotton.  In sorghum the net acres model 
is never significant, but the pre-1995 effect is significant in the Delta, Midwest, and southeast.  
Southeast also demonstrates a downward post 1995 trend.  Conversely, in the West experience 
prior to 1995 was better than more recent experience.   In cotton, Delta loss cost experience was 
higher prior to 1995.  However, results across models are inconsistent for the Southeast, 
Southwest, and West regions. 
 
The final regional model is reported in Table 4.23.  It reports the results for barley.  Only the 
result for the Midwest region is statistically significant and it suggests that experience prior to 
1995 had a lower expected loss cost ratio.  
 

The final table in this set is for national level models (Table 4.24).  All crops are reported in a 
single table.  In many instances the national level results mimic the regional results for the major 
production regions.  However, this does not always hold.  First, none of the non-stationarity 
estimates are significant for spring wheat or for barley – similar to most of the regional results.  
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There is evidence of higher national-aggregate loss costs prior to 1995 for winter wheat, corn, 
rice and soybeans.  When we examine post-1994 loss cost trends at the national level, evidence is 
found for declining loss costs in corn, soybeans, cotton and sorghum.  No evidence is found of 
increasing trends in loss cost.  Our third model uses net acres insured as a variable to explain 
non-stationarity of loss costs.  This model suggests improving loss costs for corn, soybeans, and 
cotton.   

Ultimately, these results are quite similar to the limited sample we examined in our previous rate 
review report.  Statistically significant trends in loss cost while controlling for random weather 
poses a serious issue for rating.  We have suggested several alternative ways to quantify these 
effects and analyzed them at state, regional, and national levels of aggregation.  The other 
alternative is to shorten the time series used for base rates so that the effects we observe are 
excluded or dampened.  One might also combine approaches.  For example one might limit the 
years used for base rates to 20 years but currently five of those years would be prior to 1995 and 
one might apply a pre-1995 adjustment to those years until they drop from the 20 year rating 
period.  In general, we believe it is desirable to make these non-stationarity adjustments 
multiplicative and impose constraints on the magnitude of the effect these adjustments would 
have on loss costs.  Once the non-stationarity adjustments are made then weather probabilities 
would be applied.   
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Table 4.20. Region non-stationarity tests for spring and winter wheat. 
Region  Pre-1995 Loss Cost 

Effect 
  Post 1994 Loss Cost 

Trend 
  Net Acres (10,000 

ac) 
 

   Spring wheat   
Northern Plains 0.0185  .    
Northern Plains -0.01318  -0.003639    
Northern Plains .  .  -0.00008  
Pacific Northwest 0.01188  .    
Pacific Northwest 0.00661  -0.001259    
Pacific Northwest .  .  -0.00084  
   Winter Wheat   
Delta 0.13971 * .  .  
Delta 0.11266 * -0.0033819  .  
Delta .  .  -0.00373  
East 0.07386  .  .  
East 0.0304  -0.0048586 * .  
East .  .  0.00073  
Great Plains -0.00941  .  .  
Great Plains -0.01839  -0.001152   .  
Great Plains .  .  0.0001 * 
Midwest 0.04792 * .  .  
Midwest 0.00487  -0.0055326  .  
Midwest .  .  0.00003  
Northern Plains -0.0611  .  .  
Northern Plains -0.0762  -0.0040727  .  
Northern Plains .  .  0.00057 * 
Pacific Northwest -0.02197 * .  .  
Pacific Northwest -0.01697  0.0006348  .  
Pacific Northwest .  .  -0.00006  
Southeast 0.0484 * .  .  
Southeast 0.04179  -0.0007686  .  
Southeast .  .  -0.00072  
Southern Plains -0.08826 * .  .  
Southern Plains -0.02858  0.00713888  .  
Southern Plains .  .  0.00037 * 
Southwest -0.03004  .  .  
Southwest -0.08856  -0.0074822  .  
Southwest .  .  0.00651 * 
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Table 4.21. Region non-stationarity tests for corn and soybeans. 
Region  Pre-1995 Loss Cost 

Effect 
  Post 1994 Loss Cost 

Trend 
  Net Acres (10,000 

ac) 
 

    Corn    
Delta 0.034925 * .  .  
Delta 0.008874  -0.0029882  .  
Delta .  .  -0.00154 * 
East 0.006703  .  .  
East -0.00962  -0.0018861  .  
East .  .  0.00044  
Midwest 0.043685 * .  .  
Midwest 0.020337  -0.0028144 * .  
Midwest .  .  -0.00009 * 
Southeast 0.014344  .  .  
Southeast -0.02243  -0.0047605  .  
Southeast .  .  -0.00001 * 
Southern Plains 0.0087  .  .  
Southern Plains -0.00459  -0.0016893 * .  
Southern Plains .  .  -0.00007  
West 0.035159  .  .  
West 0.0547  0.00222292  .  
West .  .  0.00191  
   Soybeans    
Delta 0.10693 * .  .  
Delta 0.07751 * -0.0037164  .  
Delta .  .  -0.00067  
East -0.00347  .  .  
East -0.02656  -0.0026502 * .  
East .  .  0.00010262  
Midwest 0.03513 * .  .  
Midwest 0.03005 * -0.0006099  .  
Midwest .  .  -0.000082  
Southeast 0.07068 * .  .  
Southeast -0.00497  -0.0090618 * .  
Southeast .  .  -0.0003843  
Upper Midwest 0.01123  .  .  
Upper Midwest 0.00244  -0.0010989  .  
Upper Midwest .  .  -0000475  
West 0.04458  .  .  
West 0.05379  0.00120945  .  
West .  .  -0.0003471  
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Table 4.22. Region non-stationarity tests for sorghum and cotton. 
Region  Pre-1995 

Loss Cost 
Effect 

  Post 1994 
Loss Cost 
Trend 

  Net 
Acres 
(10,000 
ac) 

  

    Sorghum    
Delta 0.06341 * .  .  
Delta 0.09199 * 0.003598  .  
Delta .  .  0.00146  
East 0.04206  .  .  
East 0.02496  -0.002065  .  
East .  .  0.13723  
Midwest 0.03544 * .  .  
Midwest 0.00381  -0.003726  .  
Midwest .  .  0.0001  
Southeast 0.10649 * .  .  
Southeast 0.02314  -0.010552 * .  
Southeast .  .  -0.07146  
Upper Midwest -0.02973  .  .  
Upper Midwest -0.10657  -0.008961  .  
Upper Midwest .  .  0.00277  
West -0.04838 * .  .  
West -0.07605 * -0.003563  .  
West .  .  0.00008  
   Cotton    
Delta 0.03686 * .  .  
Delta 0.00329  -0.003946  .  
Delta .  .  0.00008  
Southeast -0.01487  .  .  
Southeast -0.08212 * -0.009031 * .  
Southeast .  .  0.00008  
Southwest 0.00098  .  .  
Southwest -0.12678 * -0.015504 * .  
Southwest .  .  0.00008  
West -0.00996  .  .  
West -0.04922  -0.005002 * .  
West .  .  0.00008 * 
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Table 4.23. Region non-stationarity tests for barley. 
Region  Pre-1995 

Loss Cost 
Effect 

  Post 1994 
Loss Cost 
Trend 

  Net Acres 
(10,000 ac) 

   Barley   
Great Plains 0.00648  .   
Great Plains -0.03612  -0.004959   
Great Plains .  .  0.00258 
Midwest -0.08571 * .   
Midwest -0.0708  0.002078   
Midwest .  .  -0.00245 
Northern Plains 0.01479  .   
Northern Plains -0.03695  -0.006152   
Northern Plains .  .  -0.00014 
Pacific Northwest -0.01843  .   
Pacific Northwest 0.00037  0.002385   
Pacific Northwest .  .  -0.00069 
Southwest 0.00694  .   
Southwest 0.12566  0.011005   
Southwest .  .  0.02428 
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Table 4.24 National-level non-stationarity estimates. 
Pre-1995 Loss 
Cost Effect 

  Post 1994 Loss 
Cost Trend 

  Net Acres 
(10,000 ac) 

 

  Spring wheat    
-0.00503  .  .  
-0.01618  -0.00132  .  

.  .  1.26E-09  
  Winter wheat   

0.024777 * .  .  
0.011013  -0.0017  .  

.  .  0.000021593  
  Corn    

0.030991 * .  .  
0.006862  -0.00289 * .  

.  .  -0.000091562 * 
  Soybeans    

0.046959 * .  .  
0.027417 * -0.00236 * .  

.  .  -0.00012155 * 
  Sorghum    

0.037107  .  .  
0.004925  -0.00393 * .  

.  .  -0.000176957   
  Cotton     

0.002815  .  .  
-0.05395 * -0.00687 * .  

.  .  0.00019965 * 
  Rice    

0.03342 * .  .  
0.034434 * 0.000128  .  

.  .  -0.000317513  
  Barley     

0.020735  .  .  
0.002854  -0.0021  .  

.  .  0.000020118  
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Using Shortened Loss Cost Series for Base Rates 
 
Table 4.25 reports the national level averages from an analysis that reflects another alternative 
means to address non-stationarity in program loss cost expectations.  These results largely follow 
the same approach as reported in Table 4.9.  However, in this analysis data from older years are 
omitted from the base rate calculation if it more than 20 years old.  The approach assumes that a 
longer time series would be used to quantify the catastrophic load.  The results in Table 4.25 are 
derived by conducting the weather weighting procedure described earlier, but then any data older 
than 20 years are dropped from the binning step of the process.   
 
The table reflects three scenarios relative to the catastrophic load.  First, we show the no 
censoring scenarios which use the full loss cost record and ignore catastrophic loading, then we 
report estimates assuming the loss cost is censored at the 80th or the 90th percentile.  In each 
scenario we report both weather –weighted and an unweighted result.  All results are report as a 
percentage of the table 9 results.  Values greater than 100% suggest that the shorter series would 
increase rates relative to using 30 years of data, while values of less than 100% indicate that 
current rates would be lowered by shortening the base rate series.  Within a crop the results are 
largely consistent across censoring scenarios.  For example, all values for apples are above 100% 
while all values for barley are less than 100%.   
 
The results for three crops suggest that limiting loss cost histories to 20 years would result in 
substantially higher rates for apples, cotton and winter wheat.  Conversely, barley, corn, 
soybeans and spring wheat all are observed to have substantially lower rates.  Note that 
significant variation is observed within a crop.   
 
Weighting Approaches 
 
In this section, we explore three other “weighting” approaches: net acre weighting, decile 
weighting, and linear weighting. Given the weather weighting approach discussed above, all the 
recency weighting here is done in the step where the average loss cost is calculated within each 
bin (i.e., within-bin averaging). For example, if there are 3 years in bin 5 that includes 1986, 
1994, and 2008, then the year 2008 is given more weight than 1994 and 1986, and 1994 has 
more weight compared to 1986 when we take the within-bin average loss cost. After taking the 
within-bin average loss costs that accounts for recency, then the average across bins is calculated 
without anymore weighting (consistent with the weather weighting approach described in the 
previous section). 
 
Net Acre Weighting 
 
In this approach, we use the county level net acres insured as weights to account for recency. The 
county level net acre variable is effectively a “proxy” for recency weights given that it has been 
increasing over time (from 1980 till the 2000s) (See Figure 3.3). In Table 4.26, we present the 
national summary results for all crops when net acre weighting is applied. Comparing these 
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results with Table 4.9 (no recency weighting), we find that the average loss costs for barley, 
corn, potatoes, rice, soybeans, and spring wheat tend to be lower with net acre weighting than 
without. In contrast, the average loss costs for apples, cotton, sorghum, and winter wheat tend to 
be higher under the net acre weighting scheme as compared to when there is no net acre 
weighting. 
 
Decile or Decade Weighting 
 
The main idea for the decile or decade weighting approach is to produce three separate “step-
down” weights for the following three decades 1980s, 1990s, and 2000s. In this case, we would 
like to give more weight to the years in the more recent decades such that: weight for 2000s > 
weight for 1990s > weight for 1980s. Since the data from 2000s is the most recent, the years in 
the 2000s will always get a weight of one. 
 
The challenge is to be able to calculate the “declining” weights for the 1990s and 1980s. The 
construction of the decile weights is done at the state level and it depends on the median loss cost 
of the middle weather bins for each decade. Given the state level construction, all counties within 
a particular state have the same decile weights and these decile weights only vary across states. 
In this case, the weather index development and the loss year classification (i.e. assigning years 
to bins), as described in the weather weighting approach, has to be conducted at the state level as 
well. 
 
Using the data from the state-level binning results, the following relationship for the middle bins 
of each state is examined first: median loss cost for 1980s > median loss cost for 1990s > median 
loss cost for 2000s. If this relationship holds for a particular state, then all counties in the state 
will have the following decile weights: weight for 2000s =1, weight for 1990s = median loss cost 
in 2000s/median loss cost in 1990s, weight for 1980s = median loss cost for 2000s/median loss 
cost in 1980s. Again, the medians here are calculated for the middle weather bins only (to be 
able to account for/normalize the weather effect on losses). This would result in declining 
decadal weights, given that the relationship above holds. 
 
One issue is that there are cases where the relationship described above does not hold.  In cases 
like this, we then explore whether at least the following two relationships hold: (a) median loss 
cost for 1980s > median loss cost for 2000s or (b) median loss cost for 1990s > median loss cost 
for 2000s. If (a) holds, then the decile weights are set as follows: weights 2000s = 1 and weights 
for 1980s and 1990s = median loss cost for 2000s/median los cost 1980s. If (b) holds, then the 
decile weights are set as follows: weights 2000s = 1 and weights for 1980s and 1990s = median 
loss cost in 2000s/median loss cost in 1990s. If any of the conditions (the original in the previous 
paragraph, (a), and (b)) above does not hold, then all years are weighted equally in these states 
(i.e., weights = 1 for all decades; equal weighting). 
 
Given the approach described above, a “declining” decile weighting scheme is applied when the 
median loss cost for the most recent decade (2000s) is lower than the earlier decades. If the loss 
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cost for a particular state is trending upward (i.e. loss costs in the most recent decade is higher 
than previous decades), then equal weighting is applied and the higher loss costs in the most 
recent years are not given more weight. This is an “asymmetric” weighting scheme as it stands, 
but a “symmetric” scheme that is applied in cases where loss costs are trending up or trending 
down can still be implemented.  
 
Application of the decile weighting approach described above for all crops is presented in Table 
4.27.  Comparing this table with Table 4.9 (no recency weighting), we find that the average loss 
costs for barley, corn, cotton, potatoes, rice, soybeans, spring wheat, and winter wheat tend to be 
lower with asymmetric decile weighting than without any recency weighting. In contrast, the 
average loss costs for apples and sorghum tend to be higher under the asymmetric decile 
weighting method as compared to when there is no recency weighting. Note that these results 
may change if a symmetric weighting approach is used (i.e., it is likely that there will be more 
cases/crops where loss costs under this scheme would be higher than the approach without any 
recency weighting).  
 
Linear Weighting 
 
In Coble et al. (2010; p. 81), it was suggested that a scheme based on a linear weighting system 
may be one approach for giving more weight to more recent years of loss cost data. In particular, 
using a declining weight function of the form: j

t jw λ− = , where w is the weight, and λ is a 
weighting parameter where 0< λ<1 (note that in our case: time t = 2009 to 1980 and j=0 to 29). 
This approach provides a “smoother” system for assigning recency weights. This is in contrast to 
the decile weighting described above where there are abrupt “step-down” weights for each 
decade. 
 
In Table 4.28, we present the results of a linear weighting scheme where lambda is assumed to 
be equal 0.8 for all counties.   Comparing this table with Table 4.9 (no recency weighting), we 
find that the average loss costs for barley, corn, cotton, potatoes, rice, soybeans, and spring 
wheat tend to be lower with the linear weighting scheme than without any recency weighting. In 
contrast, the average loss costs for apples, sorghum, winter wheat tend to be higher under the 
linear weighting system as compared to when there is no recency weighting. 
 
One limitation of the linear weighting scheme implemented above is the ad hoc assumption of 
using 0.8 as the value for lambda. In Table 4.28, we simply assume this lambda value. Hence, 
the question is whether there is a more empirical approach to assigning lambda. One possible 
approach is to do a grid-search over the domain of lambda (for example, from 0.99 to 0.01) and 
picking the value where the out-of-sample prediction error is smallest. This exercise can be done 
at the state level so that the value of lambda will only vary across states. Note that the linear 
weighting applied above is a “symmetric” weighting scheme where the declining weights are 
always applied even in cases where loss costs are trending upwards.   
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Summary 
 
For the major commodity crops (e.g., corn, soybeans, spring wheat, and cotton), accounting for 
recency using all the weighting schemes above generally reduces the average loss costs 
compared to when recency is not accounted for. But for other crops like apples and sorghum, 
recency weighting generally increases the liability weighted average loss cost at the national 
level. 
 
Liability average loss costs of corn, soybeans, spring wheat and cotton tend to be lowest under 
the linear weighting or net acre weighting scheme. It should be noted, however, that the resulting 
liability-weighted average loss costs for all the recency weighting schemes described above are 
similar to the approach of simply using 20 years of the most recent data in the calculation (See 
Table 4.29 below). Hence, there is appeal to using the “most recent 20 years” approach to 
account for recency because of its simplicity in implementation compared to the other 
approaches described above. 
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Table 4.25. Aggregate implications of shortening loss cost history to twenty years. 
20 year loss cost as a percentage of 30 year loss cost    
Crop No. of 

Counties 
Unweighted 

loss costs 
(no 

censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 

at 80th) 

Weather 
weighted 
loss costs 
(censoring 

at 80th) 

Unweighted 
loss costs  
(censoring 

at 90th) 

Weather 
weighted 
loss costs 
(censoring 

at 90th) 

Apples 138 106% 106% 107% 107% 107% 107% 
Barley 629 80% 85% 89% 92% 84% 88% 
Corn 1914 82% 88% 88% 90% 86% 89% 
Cotton 431 106% 97% 109% 103% 109% 101% 
Potatoes 127 97% 98% 100% 100% 99% 100% 
Rice 83 82% 90% 97% 98% 92% 96% 
Sorghum 727 101% 102% 101% 102% 102% 104% 
Soybeans 1512 84% 87% 84% 87% 84% 87% 
spring 
wheat 

242 86% 96% 90% 95% 87% 94% 

Winter 
wheat 

937 104% 105% 109% 107% 108% 107% 
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Table 4.26. Liability weighted national average (across counties) of unweighted and weather 
weighted average loss costs for apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, 
spring wheat and winter wheat where recency is accounted for based on weighting with net acres 
insured. 
Crop No. of 

Counties 
Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 140 0.2136085 0.18699 0.1771056 0.1576884 0.1976167 0.1758409 

barley 646 0.0992693 0.0956556 0.0748457 0.0689429 0.0891087 0.0830908 

corn 1930 0.0392705 0.0469135 0.0261702 0.0281878 0.0335283 0.0382481 

cotton 437 0.1605034 0.1459869 0.1203881 0.1129118 0.1428675 0.1320719 

potatoes 128 0.0822251 0.0799372 0.0689341 0.0653896 0.0775737 0.0734819 

rice 84 0.0197633 0.0226357 0.014755 0.0147192 0.0179126 0.0188639 

sorghum 750 0.1407187 0.1351842 0.0969112 0.0937687 0.1218699 0.1171366 

soybeans 1523 0.0446129 0.0495869 0.0347107 0.0362827 0.0404842 0.0433171 

spring 
wheat 

244 0.1215366 0.1150827 0.0919328 0.0874509 0.1112503 0.1055005 

winter 
wheat 

951 0.1073631 0.0886324 0.0783354 0.0681608 0.0931634 0.0791437 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one. 
 
 
 



Methodology Analysis for Weighting of Historical Experience 

 

Page 77 

 

Table 4.27. Liability weighted national average (across counties) of unweighted and weather 
weighted average loss costs for apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, 
spring wheat and winter wheat where recency is accounted for using  asymmetric decile 
weighting. 
Crop No. of 

Counties 
Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 140 0.1845765 0.1767554 0.1516272 0.1469343 0.1729096 0.1660752 

barley 646 0.1035774 0.0947588 0.0728447 0.0677464 0.0888289 0.0818292 

corn 1930 0.0455134 0.0504807 0.0272444 0.0287956 0.0364903 0.0397437 

cotton 437 0.1423415 0.1456929 0.1098623 0.1110354 0.1283831 0.130419 

potatoes 128 0.081111 0.0806767 0.065913 0.0649548 0.0746961 0.0733913 

rice 84 0.0231644 0.0236532 0.0143203 0.0142576 0.0183361 0.0184296 

sorghum 750 0.1210101 0.1318028 0.0888684 0.0923029 0.1081026 0.1141039 

soybeans 1523 0.0502049 0.0517504 0.0363647 0.0368126 0.0438882 0.0445343 

spring 
wheat 

244 0.1195638 0.1164355 0.0881649 0.0871797 0.1080548 0.1059476 

winter 
wheat 

951 0.0979213 0.0852977 0.0720352 0.0656954 0.0850161 0.0760926 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one. 
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Table 4.28. Liability weighted national average (across counties) of unweighted and weather 
weighted average loss costs for apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, 
spring wheat and winter wheat where recency is accounted for using  linear weighting with λ = 
0.8. 
Crop No. of 

Counties 
Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 140 0.2717638 0.206555 0.2139327 0.1684872 0.2461658 0.1915181 

barley 646 0.0764412 0.0889495 0.0634834 0.0666461 0.0724698 0.0793477 

corn 1930 0.0303293 0.0439634 0.0228138 0.0272648 0.0275455 0.0365273 

cotton 437 0.152981 0.1380243 0.1059132 0.1066816 0.1284575 0.1246372 

potatoes 128 0.0682266 0.0792112 0.0604934 0.065126 0.065762 0.0731629 

rice 84 0.0135211 0.0204599 0.0111938 0.0134719 0.0126181 0.0170293 

sorghum 750 0.1343515 0.1346023 0.0922405 0.0940785 0.1159699 0.1169317 

soybeans 1523 0.0348925 0.0463969 0.0287758 0.0339744 0.0326577 0.0404802 

spring 
wheat 

244 0.0920505 0.1073243 0.0749443 0.0839555 0.0870996 0.0995594 

winter 
wheat 

951 0.1194645 0.0906294 0.0833433 0.0688864 0.1006851 0.0802436 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one.  
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Table 4.29. Liability weighted national average (across counties) of unweighted and weather 
weighted average loss costs for apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, 
spring wheat and winter wheat where recency is accounted for by using the most recent 20 years 
of data only.  
Crop No. of 

Counties 
Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 138 0.1954522 0.1855349 0.1619009 0.1557007 0.184652 0.1759565 

barley 629 0.0826886 0.0812677 0.064345 0.0621968 0.0744748 0.0724301 

corn 1914 0.0415752 0.0461098 0.0253727 0.0263999 0.0337864 0.0364014 

cotton 431 0.1519396 0.1419295 0.1202358 0.1141178 0.1406828 0.1317698 

potatoes 127 0.0805161 0.0788176 0.0661329 0.0646112 0.074741 0.0727677 

rice 83 0.0215826 0.0227762 0.0150129 0.0145862 0.0186913 0.0186174 

sorghum 727 0.1221199 0.1338205 0.0893262 0.0941685 0.1104833 0.119158 

soybeans 1512 0.0453196 0.0469253 0.0322739 0.0329237 0.0392736 0.0403107 

spring 
wheat 

242 0.1048348 0.1119701 0.0801261 0.0825618 0.0949669 0.1000168 

winter 
wheat 

937 0.1020952 0.0891515 0.0786298 0.0700948 0.0923004 0.0816391 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one. 
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5. Recommendations and Assessment of Alternative Approaches   

 
As directed by the statement of work for this project Sumaria has performed a detailed 
investigation to develop an optimal methodology for weighting, or otherwise adjusting, RMA’s 
historical loss cost data in order to maximize its statistical validity for developing premium rates. 
The statement of work also directed us to deliver a report that offers multiple approaches that 
compare and contrast the varying combinations of the factors based on statistical validity, 
feasibility, sustainability, and a balance of improvement versus complexity.  In our assessment 
and recommendations we will discuss separately the two primary thrusts of this study -- weather 
weighting and changing severity of loss cost over time. 
 
5.1  Recommendations 
 
 
Weather Weighting  
 
We were directed to consider the Palmer Drought Index and other weather variables to control 
for differences in crop growing conditions.  We have conducted analysis nationally for nine 
crops (apples, barley, corn, cotton, potatoes, rice, sorghum, soybeans, and wheat).  These crops 
represent major crops insured by RMA and specialty crops which have unique weather risks.  
We believe this provides a robust assessment of weather weighting. 
 
Recommendation 1. – After evaluating various alternative sources of data based on several 
criteria we believe the weather data collection that best meets these criteria is the National 
Climatic Data Center’s Time Bias Corrected Divisional Temperature-Precipitation-Drought 
Index data, also call the Climate Division Data.   
 
While more detailed data may be available in some cases it is often for shorter time periods or 
limited locations.  The climate division data provide several drought indexes and other weather 
variables, time-aggregated to the monthly level and spatially-aggregated to the climate division 
level for the years back to 1895.  Thus, these data will allow RMA to compare the weather 
experienced under the modern program to weather extending 80 years past the 1975 cut-off of 
loss cost data.    
 
Recommendation 2. – After evaluating various methods to capture the relationship of RMA loss 
experience to weather we recommend RMA use fractional logit models estimated at the climate 
division level to relate loss cost experience to the Palmer Drought Severity Index (PDSI) and 
Cooling Degree Days (CDD).  Time period variants of both should be used for different crops 
and locations. Out-of-sample forecasting competition would be used to select the specific model 
time-period/variables for a crop/climate division and if the models are not found statistically 
significant we recommend no weather weighting be performed.  This process creates a weather 
index from 1895-present which ranks the growing conditions experienced in each year. 
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Fractional logit models account for the frequent occurrence of zeros in the regression dependent 
variable.  We recommend out-of-sample competition for model selection to avoid over-fitting the 
model.  PDSI is recommended because it subsumes effects of both precipitation and temperature 
and provides a locally relative scale ranging from very wet to very dry conditions.  The CDD 
allows measurement of both excess heat in critical periods and sufficient heat for plant growth 
over a full season. 
 
Recommendation 3. – Given recommendation 2 we propose that RMA categorize the loss cost 
experience observed over the period chosen into weather ‘probability bins’.  These bins would 
be chosen according to a step-wise procedure which would choose a parsimonious number of 
bins for the crop/climate division.  Once observed loss costs are categorized in bins, all 
historical loss costs within a bin are given equal probability weight.  The bins recommended 
would have variable width but equal probability. 
 
Essentially a form of creating a non-parametric histogram, this procedure was chosen to avoid 
estimation of parametric densities for each crop/climate division.  Loss costs are bounded 
between zero and one.  They are also frequently right skewed with infrequent but severe upward 
spikes in some years.  The weather index provides a measure of weather probability over 115 
years, but RMA experience extends for no more than 35 years.  Thus, the longer time period will 
provide probabilities that may not be observed in RMA experience.  The variable width binning 
process we propose ensures actual observations in all bins. 
 
Recommendation 4. – While not a directive in the statement of work, a conclusion reached 
during our analysis is that RMA should use all years available to calculate the catastrophic load 
and that extreme loss costs within the catastrophic load should be weighted using the weather 
index probabilities.  Further, we recommend changing the catastrophic load cutoff to 90% and 
reducing the aggregation region for catastrophic load from the state level to a climate division 
which is consistent with the weather weighting procedure.   
 
Specifically, if the weather index for a particular year is above the 97th percentile, we 
recommend that the weight given to that year’s input to the catastrophe load be adjusted to 
reflect the percentile of the weather index.  That is, if the data span 30 years of experience, a year 
with a weather index at the 98th percentile should be given 2% (1-in-50) weight rather than 
3.33% (1-in-30) weight.  The weight taken from the adjusted year should then be spread evenly 
among the remaining years.     
 
Changing Severity of Loss Costs 
 
We were also directed to consider changing severity of loss costs over time due to technological 
advances and changing agronomic conditions. Finally we were asked to address how to 
incorporate program participation changes over time in a way that represents the current 
program. There are a variety of factors that suggest non-stationarity in loss cost data.  Primary 
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factors we find in RMA data are an expanding participant pool, evolving production systems, 
and changing program underwriting rules.  RMA is confronted with the inherent conundrum of 
significant weather risk which suggests use of a long data series for rating while accounting for 
the fact that recent experience is often more representative of the current insurance contract and 
pool of insureds than older experience.   
 
We examined several approaches including: 

1. A discrete adjustment to data prior to 1995 
2. A discrete adjustment to data prior to 1995 plus a trend adjustment since 1995 
3. Adjusting loss cost based as a function of net acres insured 
4. Shortening the loss history for base rates (not catastrophic loads) to twenty years 
5. Decadal weights comparing median loss cost bins 
6. A linear recency effect 
7. Net acre weights within probability bins 

 
All of these approaches have instances where they appear to perform well.  The first three 
procedures require model estimation while the fourth is a procedure that would only slightly alter 
current RMA practices.  We believe all could be made compatible with other RMA procedures 
and with weather weighting.  However, we stress that where statistical analysis indicates non-
stationarity in the loss cost history, making no adjustment results in a rate that is not actuarially 
sound.  Ultimately we recommend a combination of option 1, 4 and 7. The discrete adjustment 
for data prior to 1995 would be applied to the adjusted loss cost data first.  Specifically we would 
estimate the effect at a regional level and calculate a percentage difference by state using the 
effect relative to the post-1995 average loss cost.  Shortening the loss history for base rates to 20 
years while using more years for catastrophic loading reflects the recognition that a longer time 
series is needed to capture extreme events than for the risks quantified by the base rate.  Finally, 
using net acre weighting within probability categories “bins’ recognizes the additional credibility 
of experience that is based on more exposed acres.       
   
 
5.2 Implications 
 
 As directed by the statement of work for this project, Sumaria has performed a detailed 
investigation of the proposed methodology for weighting, and otherwise adjusting, RMA’s 
historical loss cost data in order to maximize its statistical validity for developing premium rates. 
Our team has also provided analysis of the implications of the proposed approach.  This section 
of the report summarizes the effect the proposed approach will have on RMA rates.  Because 
corn and soybeans are a priority for implementation our results analysis focuses on those crops.  
 
Table 5.1 reports national average estimated changes in corn and soybeans base premium rates.  
These results are liability weighted averages of county level data.  They are derived by assuming 
catastrophic loading will occur at the 90th percentile in the future rather than at the 80th as has 
been used in the past. The estimated base rate change is calculated by comparing the base rate 
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derived using current procedures versus proposed procedures.  Current procedures are modeled 
using 30 years of adjusted loss cost data and using a simple average of the adjusted loss costs 
after the catastrophic loading procedure is applied.  The proposed procedure includes four 
modifications of the current base rating procedure: 

1. A pre-1995 adjustment,  
2. Weather weighting,  
3. Net acre weighting within probability bins, and  
4. The use of a 20 year moving average of loss data. 

 
The results in Table 5.1 reflect the combined effect of all four modifications.  Note that these 
results do not impose restrictions on the annual magnitude of adjustment and do not include the 
catastrophic load portion of the rate.  Further, these estimated changes impact only the yield 
portion of a rate and would not alter the price risk portion of a revenue insurance rate.   
 
The national average change in corn base premium rates is 19.1 percent and 25.2 percent for 
soybeans.  However, while the percentage change for soybeans is larger than for corn, the 
national average soybean base rates are also higher.  The table also reports a breakout for four 
states (Illinois, Indiana, Iowa, and Minnesota).  For corn, the percentage rate reduction in all four 
of these states is well above the national average.  For soybeans, the rate reduction in Illinois is 
over 43.6 percent, but in the other three states the rate reduction is on par with the national 
average.       
 
Further disaggregation of the results can be seen in figure 5.1 which shows county-by-county 
comparisons in a map.  These results show even greater heterogeneity across locations.  In 
general, the greatest percentage rate reduction for corn occurs in major production regions and 
some outlying irrigated counties.   While the national average base rate declines 19 percent, there 
are regions with substantial rate increases such as portions of western Kansas and portions of 
New England. 
 
Figure 5.2 reports the county-by-county results for soybeans.  The variation across counties is 
somewhat less dramatic than for corn.  In general, the Corn Belt is observed to have rate 
reductions which are centered in Illinois.  Some other regions have similar reduction such as the 
Mid-South.  Rate increases are suggested in some Western Plains states and portions of the 
Eastern Seaboard.    
  



Methodology Analysis for Weighting of Historical Experience 

 

Page 84 

 

Table 5.1 Estimated effects on base rates.  
 

  National 
Average 

Illinois Indiana Iowa Minnesota 

       
Corn Current Procedure 3.49% 1.66% 2.37% 1.45% 2.33% 
  Proposed Modification 2.83% 1.04% 1.60% 1.01% 1.31% 
  Percent change -19.1% -37.7% -32.6% -30.7% -43.8% 
       
Soybeans Current Procedure 4.41% 1.82% 2.31% 1.38% 3.13% 
 Proposed Modification 3.29% 1.02% 1.77% 1.02% 2.32% 
 Percent change -25.2% -43.6% -23.3% -25.7% -25.7% 
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Figure 5.1 county level changes in estimated base rate for corn (508 compliant data is in 
Appendix D-7). 
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Figure 5.2 county level changes in estimated base rate for soybeans (508 compliant data is 
in Appendix D-8). 
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